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 CURRENT
OPINION Genetic advances in systemic lupus erythematosus:

an update

Lingyan Chena, David L. Morrisa, and Timothy J. Vysea,b

Purpose of review
More than 80 susceptibility loci are now reported to show robust genetic association with systemic lupus
erythematosus (SLE). The differential functional effects of the risk alleles for the majority of these loci remain
to be defined. Here, we review current SLE association findings and the recent progress in the annotation
of noncoding regions of the human genome as well as the new technologies and statistical methods that
can be applied to further the understanding of SLE genetics.

Recent findings
Genome-wide association studies (GWAS) have markedly expanded the catalogue of genetic signals
contributing to SLE development; we can now explain more than 50% of the disease’s heritability.
Expression quantitative trait loci mapping with colocalization analysis of GWAS results help to identify the
underlying causal genes. The Encyclopedia of DNA elements, Roadmap Epigenome, and the Blueprint
Epigenome projects have jointly annotated more than 80% of the noncoding genome, providing a wealth
of information (from healthy individuals) to define the functional elements within the risk loci. Technologies,
such as next-generation sequencing, chromatin structure determination, and genome editing, will help
elucidate the actual mechanisms that underpin SLE risk alleles.

Summary
Gene expression and epigenetic databases provide a valuable resource to interpret genetic association in
SLE. Expansion of such resources to include disease status and multiple ancestries will further aid the
exploration of the biology underlying the genetics.

Keywords
causal variants, epigenome, expression quantitative trait loci, genome-wide association studies, systemic
lupus erythematosus

INTRODUCTION

Systemic lupus erythematosus (SLE) is a chronic
inflammatory autoimmune disease associated with
a wide range of signs and symptoms varying among
affected individuals and can involve many organs
and systems, including the skin, joints, kidneys,
lungs, central nervous system, and haematopoietic
system. The population prevalence varies with
ancestry, being more prevalent in non-European
populations with a significant sex disparity towards
women (6 : 1) during the years between menarche
and menopause [1]. Although the exact cause of
lupus is not fully understood, a strong genetic link
has been identified through the application of fam-
ily and large-scale genome-wide association studies
(GWAS). The concordance rate in monozygotic
twins (24%) is approximately 10 fold higher than
in dizygotic twins (2%) [2,3]. A recent study from
Taiwan reported that the heritability was 43.9% and
the proportion of phenotypic variance explained by

shared and nonshared environmental factors was
25.8 and 30.3%, respectively, suggesting nonherit-
able factors may play a considerable role in disease
pathogenesis [4].

There are now more than 80 loci reported to be
associated with the susceptibility of SLE. Here, we
review current SLE association findings and the
recent progress in the annotation of the noncoding
region of the human genome as well as new
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KEY POINTS

� The discovery of SLE-associated risk variants has
accelerated in the past 2 years with huge sample size
genome-wide and meta-analysis studies revealing novel
loci in both coding and noncoding regions of
the genome.

� Expression quantitative trait loci mapping incorporating
colocalization analysis of GWAS results help to identify
the underlying causal genes.

� The Encyclopedia of DNA elements, Roadmap, and
Blueprint projects which annotate noncoding regions
have created comprehensive maps of the human
genome.

� SLE-associated risk loci can be analysed
bioinformatically, in the context of functional annotation
to predict biological impact.

� Functional validation is required for designating
variants as ‘causal variants’, and facilitated by the
availability of genome editing tools such as clustered
regulatory interspaced short palindromic repeats
technology to artificially create the variant in a model
system relevant for disease.

Systemic lupus erythematosus and Sjogren syndrome
technologies and statistical methods, to apply this
knowledge to the understanding of SLE genetics.
INSIGHTS FROM GENOME-WIDE
ASSOCIATION STUDIES

Genetic linkage analysis and candidate gene associ-
ation studies identified several SLE susceptibility
loci (e.g., HLA-DR2/DR3) [5]. Nevertheless, the
advent and application of GWAS dramatically
advanced knowledge of the genetic cause of SLE.

There have been seven SLE GWAS in Euro-
pean population [6–10,11

&

,12], six Asian GWAS
[13–17,18

&

], and one GWAS of Amerindian ancestry
[19], as well as subsequent meta-analysis and large-
scale replication studies [20,21,22

&

,23], published
since 2008. Currently, 84 genetic loci are implicated
as SLE risk (Fig. 1: The CIRCOS plot [24] and Supple-
mentary Table 1, http://links.lww.com/COR/A37),
which, to avoid likely spurious associations, include
genetic associations with a P value less than 5�10�8

tested in a total sample size of at least 1000 indivi-
duals. The interactive version of a continually
updated resource with details on SLE associations
can be access through the following link: http://
insidegen.com/insidegen-LUPUS-Associa-
tions.html.

With the caveat that the majority of mechan-
isms remain to be elucidated, it appears that the
risk loci associated with SLE influence immune cell
 Copyright © 2017 Wolters Kluwer 
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function. Although functional studies are designed
with a-priori hypotheses in mind, key pathogenic
pathways that are likely influenced by SLE-associ-
ated gene products include: immune complex
processing and phagocytosis; DNA degradation,
apoptosis, and clearance of cellular debris; neutro-
phil and monocytes signalling; Toll-like receptor
and/or type I interferon signalling; nuclear factor
kappa beta (NF-kb) activation; and B and T-cell
function and signalling. Some genes associated with
SLE may act through several pathways. For example,
TNFAIP3, encoding the ubiquitin-editing enzyme
A20, is a key regulator of NF-kb-derived proinflam-
matory responses, which is involved in both
adaptive and innate immune pathways [25,26].
These SLE susceptibility loci contain predominantly
common (frequency of >0.1% in the general popu-
lation) associated variants that have been confirmed
among multiple ancestries, suggesting shared mech-
anisms in disease cause [27–29].
European genome-wide association studies

The largest European GWAS of SLE conducted by
our group [11

&

], comprised 7219 SLE cases and
15 991 controls of European decent, provided con-
siderable power to detect disease risk loci. Notably,
the study identified 43 susceptibility loci, 10 of
which were novel loci: SPRED2, IKZF2, IL12A,
TCF7-SKP1, DHCR7-NADSYN1, SH2B3, RAD51B,
CIITA-SOCS1, PLD2, and CXorf21. One of the great
challenges posed by interpreting GWAS data is
determining the causal genes implicated by the
genetic association data. As will be discussed below,
we put some considerable effort into this process
before naming the genes in the above list. Irrespec-
tive of the underlying causal genes, we can conclude
that the heritability explained by the risk alleles
mapped at these loci is 15.3%, which is a large
increase over the 8.7% reported by So et al. [30]
using the same measure.
Asian genome-wide association studies

An extensive large-scale fine mapping study using
Immunochip conducted in 4478 SLE cases and
12 656 controls from six East Asian cohorts ident-
ified 10 novel loci [18

&

] in Asians, encompassing
GTF2IRD1-GTF2I, DEF6, IL12B, TCF7, TERT, CD226,
PCNXL3, RASGRP1, SYNGR1, and SIGLEC6. Some of
these were previously reported to be associated in
Europeans, for example, DEF6 and TCF7. The identi-
fication of these risk loci increased the explained
heritability to 24% in Asian SLE. Nevertheless, the
Immunochip was designed from predominant Euro-
pean genetic information and will, therefore, be less
Health, Inc. All rights reserved.
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FIGURE 1. Systemic lupus erythematosus risk loci in genomic context. The CIRCOS plot [24] shows genes located within the
systemic lupus erythematosus risk loci (84 in total) according to their genomic position. The full list of variants and locus genes
for this plot is summarized in Supplementary Table 1, http://links.lww.com/COR/A37. The red block in each chromosome
indicates the centromere of the chromosome. Each chromosome arm is divided into cytogenetic bands of hg19.

Genetic advances in systemic lupus erythematosus Chen et al.
informative and not represented genetic variation in
Asian population so well as in Europeans [31].
Trans ancestry meta analyses of
genome-wide association studies

A comparison of genetic association signals across
the genome in European and Asian populations
suggested that SLE susceptibility loci were shared
extensively between both populations [22

&

]. This
motivated a transancestral approach at the
 Copyright © 2017 Wolters Kluwe
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genome-wide level to provide evidence of shared
genetic components in the two populations and
search for additional SLE associated loci. The study
by Morris et al. [22

&

], that combined three GWAS
from two ethnicities: Chinese (1659 cases and 3398
controls) and European (4044 cases and 6959 con-
trols), found evidence of considerable commonality
in terms of SLE association signals as well as map-
ping novel susceptibility loci, including CD45,
IKBKE, LBH, LPP-TPRG1-AS1, ATXN1, BACH2,
GTF2I, JAK2, RNASEH2C, and ZFP90. Notably, this
r Health, Inc. All rights reserved.
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FIGURE 2. Box plots of genetic risk scores across the five major population groups. There are standard box plots showing
medians, interquartile ranges, and whiskers, indicating 1.5 times the interquartile range (Tukey box plots) [21]. EUR,
European, N¼498; AMR, Amerindian, N¼347; SAS, South Asian, N¼487; EAS, East Asian, N¼503; AFR, African,
N¼657; from the 1000 genome phase 3 release. The dashed line represents the increase in prevalence with the rank order
(R1 represents the lowest prevalence, and R4 the highest).

Systemic lupus erythematosus and Sjogren syndrome
study suggested that the increased prevalence of SLE
in non-European (including Asians) has a genetic
basis by comparison of genetic risk scores between
populations (Fig. 2) [22

&

]. Moreover, by using all
genotyped single nucleotide polymorphisms (SNPs)
(DNA chip) to calculate heritability explained, the
explained variation increase to 28% in Chinese
patients and 27% Europeans using the GCTA algor-
ithm [32]. Although there are still some uncertain-
ties in the methodology for calculating heritability
 Copyright © 2017 Wolters Kluwer 
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explained, this shows very strong evidence that we
are making progress on the understanding of
SLE heritability.

The latest large-scale transancestral study using
Immunochip [33

&

], comprising three ancestries:
European (6748 cases and 11 516 controls), African-
American (2970 case and 2452 controls), and
Hispanic Amerindian (1872 cases and 2016 con-
trols), have identified nine novel loci for European
(TMEM39A-TIMMDC1, DGKQ, LRRC16A, SLC17A4,
Health, Inc. All rights reserved.
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OLIG3-LOC100130476, GTF2IRD1-GTF2I, FAM86B3P,
PKIA-ZC2HC1A, and GRB2), two for African-
American (PTTG1-MIR146A and PLAT) and two
for Hispanic Amerindian (GALC and CLEC16A).
By comparing results across different populations,
both ancestry-dependent and ancestry-independent
contributions to SLE risk are identified with the
caveat of unequal cohort sizes. The study reveals
evidence of sharing of genetic risk loci between
ancestries as well as evidence that each individual
population carries unique genetic risk factors at the
locus level and at the allelic level.
Missing heritability

In summary, the chip heritability identified by the
latest GWAS have explained around 28% of the
disease heritability: a marked improvement on
8.3% calculated in 2011 [30]. Although the overall
heritability of complex disease is complicated to
estimate, a study in European population from a
family survey did estimate a heritability of 66�11%
for SLE [34], indicating there are more than 50% of
missing heritability in SLE from current GWASs. If
we assume that the total heritability is 43.9% (with
25.8% for shared environmental factors) estimated
from a Taiwanese population [4], there is still one-
third of heritability left to explain. Explanations for
the missing heritability, including larger numbers of
variants of smaller effect, rarer variants (possibly
with larger effects) that are not present on genotyp-
ing arrays or structural variants poorly captured by
existing arrays, as well as epigenetic modifications,
have been suggested [35]. Innovations in genotyp-
ing and sequencing technologies, like the Immuno-
chip platform [18

&

,33
&

] and next-generation
sequencing (NGS, as described below) will advance
the investigation into common and rare variants
and potential effects on the immune system,
enhancing our understanding of the genetic risk
of SLE.

The linkage disequilibrium that exists in the
human genome facilitates the mapping of risk loci
by reducing the number of genetic variants required
for GWAS; however, the same correlation between
genetic polymorphisms at these susceptibility
loci then bedevils attempts to identify the actual
causal allele(s) at risk loci. Bayesian fine mapping
approaches had been proposed to derive smaller sets
of SNPs (termed ‘credibility sets’) as the most likely
causal variants at risk loci [36]. Nevertheless, stat-
istical methods are inadequate to fully resolve the
problem caused by linkage disequilibrium. To fur-
ther pursue likely causal SNPs within any given
credibility set, the functional effect of SNPs can be
studied in silico. As the majority of variants within
 Copyright © 2017 Wolters Kluwe
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causal credibility sets are noncoding [37,38], func-
tion is inferred using gene transcript expression
data and epigenetic modification data (as described
below) (Figs. 3 and 4).
APPLICATION OF EXPRESSION
QUANTITATIVE TRAIT LOCI MAPPING TO
GENOME-WIDE ASSOCIATION STUDIES
RESULTS

Assisted by dense genome coverage of the reference
panel from the 1000 Genome project [39], imputa-
tion and Bayesian inference provided evidence for
missense variants underpinning association for
eight genes, including PTPN22, FCGR2A, NCF2,
IFIH1, WDFY4, ITGAM, PLD2, and TYK2 [11

&

]. How-
ever, as mentioned above, the majority (85–90%) of
disease associated loci in SLE are located outside of
protein-coding regions, and so might exert their
function through altering gene expression rather
than by altering protein structure. Of note, an over-
representation (n¼16) of transcription factors
among the 43 SLE susceptibility genes have been
annotated in our recent European GWAS [11

&

],
further indicating that perturbed gene regulation
was a major functional risk factor for SLE. Expression
quantitative trait loci (eQTL) mapping, which
combines genome-wide expression profiling and
genome-wide marker-based genotyping, takes
advantage of the heritability of gene expression
profiles to identify genetic variants that correlate
with changes in gene expression. eQTL can be classi-
fied as ‘in cis’ (locally) or ‘in trans’ (at a distance)
based on their physical distance from the regulated
gene.

Some studies [18
&

,23] used public databases,
such as the whole blood eQTL browser (http://
genenetwork.nl/bloodeqtlbrowser/) [40] and tissue-
specific Genotype-Tissue Expression (GTEx) portal
(http://www.gtexportal.org/home/) [41], to deter-
mine whether the disease-associated SNP is a signifi-
cant eQTL. Of note, limitations exist when applying
eQTL analysis to the GTEx whole blood data sets; for
example, we seek eQTL in specific immune cell
subsets when studying autoimmune disease. To
highlight the potential causal genes at the suscepti-
bility loci robustly, it is essential to integrate the
disease association and eQTL data using a colocal-
ization approach. That is, to establish that the same
genetic variants that underlie the disease association
also underlie the eQTL. The presence of linkage
disequilibrium in the genome can readily obfuscate
this overlap. Colocalization methods, like the regu-
latory trait concordance (RTC) [42], conditional
analysis [32], and Bayesian colocalization [43], can
be employed to infer that the disease association and
r Health, Inc. All rights reserved.
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FIGURE 3. Overview of colocalization analysis of genome-wide association studies and expression quantitative trait loci. This
figure shows an example of expression quantitative trait loci analysis and the application of regulatory trait concordance for
the causality inference. Firstly, we subset the genes within the cis-window (�1 Mb) of the disease-associated locus
(rs2736340) and perform linear regression against the genotypes of the SNP. Colocalization analysis of the genome-wide
association studies signal and the expression quantitative trait loci signal was performed by calculating the regulatory trait
concordance score. SNP-expression pairs with regulatory trait concordance more than 0.9 were considered causal.

Systemic lupus erythematosus and Sjogren syndrome
eQTL have the same allelic basis. As many variants
have weak eQTL effects, erroneous conclusions will
be made if analyses for colocalization are not per-
formed. An example of colocalization analysis of
eQTL and GWAS is shown in Fig. 3.

Recent studies by Morris et al. [11
&

,22
&

] and
Odhams et al. [44

&

] examined the functional out-
come of SLE associated variants through the integ-
ration of GWAS and eQTL data from various cell
types ex vivo, involving T cells, B cells, natural killer
(NK) cells, stimulated and resting monocytes, as well
as lymphoblastoid cell lines (LCL). By integrating
the results of eQTL and RTC analysis, they found
evidence to support the role of causal genes as
candidates at a given locus. For example, a SLE risk
variant rs9652601 is located within CLEC16A (C-
Type Lectin Domain Family 16 Member A) – a gene
previously reported as relating to other autoimmune
 Copyright © 2017 Wolters Kluwer 
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diseases [45]. However, eQTL and RTC analyses
suggest that SOCS1 (Suppressor of Cytokine Signal-
ling 1) is more likely be a causal gene at the locus
(eQTL FDR�0.01 & RTC score �0.9). Moreover,
the Odhams et al.’s study [44

&

] illustrated the
benefits of using RNA-seq as opposed to micro-
arrays for eQTL mapping, due to more informative
data generated by RNA-seq. With RNA-seq, tran-
script profiling can be done on the gene-level,
exon-level, and splice-junction-level, which is
more effective in explaining potential regulatory
mechanisms.

Nevertheless, we believe that many eQTLs
related to SLE risk alleles remain unidentified, data
from diverse stimulations and time points will be
required, as well as gene expression data from
patient material, to reveal the full eQTL landscape
of SLE genetics.
Health, Inc. All rights reserved.
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FIGURE 4. Schematic overview of fine mapping causal SNPs by integrating genetics and epigenetics. This figure illustrates the
functional annotation approach by an example, BLK (data unpublished). The epigenetic data of two histone markers
(H3K27ac and H3K9ac) from three primary cell types (B cell, T cell, and monocytes) (Roadmap Project) are represented for
the target locus. This region contains 17 SNPs derived from 99% Bayesian credibility set of the risk locus. Rs2736340 is
associated with systemic lupus erythematosus (Fig. 3). rs922483 overlaps H3K27ac in all three cell types while it overlaps the
H3K9ac peak in B cells only. Furthermore, rs922483 is in strong linkage disequilibrium (r2¼0.98) with rs2736340,
indicating that there is transitive evidence due to the linkage disequilibrium that rs922483 is also associated with systemic
lupus erythematosus and is an expression quantitative trait loci. Therefore, rs922483 is the most likely functional SNP in this
risk locus.

Genetic advances in systemic lupus erythematosus Chen et al.
EPIGENETICS TO ANNOTATE
FUNCTIONAL/REGULATORY VARIANTS
An approach that is complementary to eQTL
analyses to examine the regulatory function of non-
coding genetic variants is to study gene regulation
with epigenetics. Epigenetic modifications, a term
coined to describe genome-wide chromatin modi-
fication, including DNA methylation, histone
 Copyright © 2017 Wolters Kluwe
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modifications, chromatin accessibility, microRNA
regulations, and two-dimensional chromatin inter-
actions [46], constitute an additional layer of
genomic regulation and may serve as a dynamic
link between genotype and phenotype. Such
changes in DNA and chromatin structure correlate
with changes in chromatin accessibility and tran-
scription factor binding.
r Health, Inc. All rights reserved.
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The Encyclopedia of DNA elements (ENCODE)
project (https://www.encodeproject.org/) [47] has
systematically mapped regions of transcription,
transcription factor association, chromatin struc-
ture and histone modification, and assigns bio-
chemical functions for 80% of the genome, in
particular outside of the protein-coding regions.
Overall, the project has provided an expansive
resource to define the functional DNA elements
for biomedical research, whereas the available cell
types or cell lines are limited. The cells of closest
immune relevance in ENCODE Tier 1 and Tier 2 are
LCLs (GM12878), B cells (CD20þ), and monocytes
(CD14þ), as well as T cells (CD4þ) and peripheral
blood mononuclear cell in Tier 3. A recent Immu-
nochip study in Asians [18

&

] took advantage of
ENCODE data to map the underlying loci. For
example, one of the signals (rs73366469) identified
in this study was located between two ‘general
transcription factor’ genes, GTF2I and GTF2IRD1.
By integrating the ENCODE data, they found that an
indel SNP rs587608058 (r2¼0.81), �1000 bp from
rs73366469, lay within conserved enhancer, active
chromatin and transcription factor binding sites in
LCLs and CD4þ T cells. In addition, this region was
found to overlap the transcription start sites for
GTF2I and VCF through chromatin interacting
analysis and chromosome confirmation capture
(Hi-C) analysis, providing evidence for the potential
causal variants and genes at this locus for further
study.

The Roadmap epigenomics project (http://
www.roadmapepigenomics.org/) [48

&&

] integrated
analysis of 111 reference human epigenomes to
obtain a comprehensive map of the human epige-
nomic landscape across a large collection of primary
cells (including immune cells) and tissues. This map
is extremely useful for studies of genome inter-
pretation, gene regulation, cellular differentiation,
genome evolution, genetic variation, and human
disease. In our meta GWAS analysis of Chinese and
European data [22

&

], the histone modification
markers, including acetylation markers (H3K27ac
and H3K9ac) and methylation markers
(H3K27me3 and H3K9me3), from blood cell types
were used to investigate the potential regulatory
function of the target risk loci. For example, there
are several genes, including SRGAP2, SRGAP2D,
IKBKE, RASSF5, EIF2D, and DYRK3, located within
�200 kb of the lead GWAS SNP rs2297550. The
GWAS SNP was also found to be a putative eQTL
for IKBKE, with the SLE risk allele correlated with
reduced expression in CD4þ T cells [49], CD19þ B
cells [50], and NK cells (data unpublished), but with
increased expression in CD14þ monocytes [51].
IKBKE encodes a noncanonical I-kappa-B kinase that
 Copyright © 2017 Wolters Kluwer 
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is essential in regulating inflammatory responses to
viral infection by activating the type I interferon,
NF-kB and signal transducer and activator of trnas-
cription signalling pathways, suggesting IKBKE
might be the potential causal gene. Moreover, there
is an intense histone acetylation peak around
the associated SNP rs2297550, indicating that
rs2297550 may be a potential causal variant [22

&

].
Figure 4 shows an example of fine mapping causal
SNPs by integrating genetics and epigenetics.

Another recent completed large-scale epige-
nomic project, the Blueprint project (http://www.
blueprint-epigenome.eu/) [52,53

&&

,54
&&

], has impres-
sively shown how epigenetic information and
analyses can help to study the cellular mechanisms
associated with complex human diseases. Moreover,
the Blueprint consortium generated three compre-
hensive reference panels, including genome (whole
genome sequencing), transcriptome (RNA-seq), and
epigenome (DNA methylation and histone modifi-
cation), in three immune cells (Neutrophils, mono-
cytes and T cells) from nearly 200 individuals to
characterize the contributions of diverse genomic
inputs to transcriptional variation. Summary data
from these panels can be accessed through http://
blueprint-dev.bioinfo.cnio.es/WP10/.

High-resolution maps of promoter interac-
tions [53

&&

] generated by ‘Promoter capture Hi-C’
(PCHi-C) make it possible to study the long-range
regulatory in the three-dimensional nuclear space.
By integrating PCHi-C data with disease-associated
SNPs generated by GWAS, we can prioritize the
putative target genes for the risk loci. The promoter
interactomes map may serve as a more robust
method to define cis-eQTL rather than by distance,
revealing insights into genomic regulatory mecha-
nisms of diseases.
NEXT-GENERATION SEQUENCING IN THE
GENOME RESEARCH

With the development of NGS, high-throughput
technologies that are now widely used in genome
research, any part of the genome can be sequenced.
Based on the coverage of the genome, NGS strategies
can be classified by scale: target region sequencing,
whole-exome sequencing (WES), and whole-
genome sequencing (WGS). Targeted resequencing
of risk loci in disease cohorts may facilitate the
identification of rare variants at common-allele-
associated loci [55]. WES captures all coding exons
covering 1–2% of the genome. Nevertheless, as
mentioned above, approximately 85–90% of the
risk loci associated with SLE are located outside
the coding-regions. Compared with WES, WGS
can capture the majority of the genome, which
Health, Inc. All rights reserved.
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facilitates delineation of exon duplications and
gene fusions and noncoding regions that might
be missing by WES. WGS performs better than
WES in the identification of copy number variation
and structural variation in the genome which facili-
tates the identification of coding variants in more
complex areas of the genome. However, the higher
cost and time consuming bioinformatics analyses
that are required to process the data, restrict the
application of WGS [56]. In future, with the decreas-
ing cost of sequencing and newly developed com-
putation algorithms, WGS will be increasingly
utilized.

Incorporating with a wide range of chromatin
profiling experiments, NGS is applied to investigate
chromatin biology by identifying genomic loci that
are occupied by nucleosomes, bound to transcrip-
tion factors, or accessible to nuclease cleavage [57].
Technologies such as ChIP-seq [58], FAIRE-seq,
DNase-seq [59,60], Hi-C [61], and ATAC-seq [62]
enable genome-wide investigations of a broad range
of chromatin phenomena in both qualitative and
quantitative ways. Moreover, when introducing
NGS to the transcriptome level (RNA-seq), it can
be used to detect changes in gene expression, as
discussed earlier in this review [40,63,64].
CONCLUSION

Linkage analysis and GWAS studies fail to fully
explain disease heritability and do not address the
causal nature of risk variants. NGS continues to fuel
the discovery of disease-associated common and
rare variants. The advances in analysis tools, such
as Bayesian fine mapping approaches and high
performance computation algorithms, help to make
full use of the current massive data to uncover
relationships and infer the causality among com-
plex data. Comprehensive sets of functional anno-
tations (ENCODE, Roadmap, and Blueprint projects)
in the context of complex genomic structure can be
used to predict function and guide experimentation,
such as precision genome editing with the CRISPR-
Cas (clustered regulatory interspaced short palin-
dromic repeats/CRISPR-associated) [65,66], to
address the long standing question of disease mech-
anism and heterogeneity. Nonetheless, we still have
not yet fully exploited analysis of GWAS data, such
as genetic studies in non-European populations
with different linkage disequilibrium, especially
important in SLE given the prevalence; eQTL and
epigenetic data in cells from non-European popu-
lations for functional annotation; epigenetic data in
larger cohorts to look at interindividual variation;
eQTL and epigenetic data from disease cohorts, to
look for disease specific effects [67

&&

]. Studies based
 Copyright © 2017 Wolters Kluwe
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on these cohorts will advance our understanding of
the disease mechanism, and ultimately speed up the
arrival of the era of personalized medicine with
genomic data incorporated into diagnosis, progno-
sis, and treatment in clinics.
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 CURRENT
OPINION An update on lupus animal models

Wei Li, Anton A. Titov, and Laurence Morel

Purpose of review
The complexity and heterogeneity of the clinical presentation in systemic lupus of erythematosus (SLE),
combined to the inherent limitations of clinical research, have made it difficult to investigate the cause of
this disease directly in patients. Various mouse models have been developed to dissect the cellular and
genetic mechanisms of SLE, as well as to identify therapeutic targets and to screen treatments. The purpose
of this review is to summarize the major spontaneous and induced mouse models of SLE and to provide an
update on the major advances they have contributed to the field.

Recent findings
Mouse models of SLE have continued to contribute to understand the cellular, signaling and metabolic
mechanisms contributing to the disease and how targeting these pathways can provide therapeutic targets.
Whenever possible, we discuss the advantage of using one model over the others to test a specific
hypothesis.

Summary
Spontaneous and induced models of lupus models are useful tools for the study of the cause of the disease,
identify therapeutic targets and screen treatments in preclinical studies. Each model shares specific subsets
of attributes with the disease observed in humans, which provides investigators a tool to tailor to their
specific needs.

Keywords
B cells, mouse models, systemic lupus of erythematosus, T cells, therapeutic targets

INTRODUCTION

Systemic lupus of erythematosus (SLE) is a chronic
disorder that is characterized by the over-pro-
duction of antinuclear autoantibodies (ANA) result-
ing in the formation of immune complexes that
induce tissue inflammation and destruction in
multiple organs, including the kidneys [1]. The
exact cause of SLE is still unknown, but there is a
strong evidence that a combination of environmen-
tal exposures, genetic predisposition, cellular dys-
functions and hormonal factors lead to the
development of SLE [2]. Given the high degree of
clinical heterogeneity in SLE patients, preclinical
mouse models summarized below (Table 1) have
been very valuable to investigate the cause of
SLE as well as to identify and validate therapeutic
targets.

These mouse models of SLE are either spon-
taneous or induced, but none of them fully
represents the entire clinical spectrum found in
SLE patients. However, each model presents an
overlapping subset of human lupus phenotypes
and offers specific features of interest to address-
specific preclinical purposes. In addition to poly-
genic models, a number of mouse models are based

on a single gene knock-out or transgenic expression
of genes which result in lupus-like phenotypes [11].
These strains have been instrumental in delineating
functional pathways in SLE as well as the involve-
ment of specific genes in maintaining systemic
immune tolerance and preventing immune com-
plex-induced inflammation. There have been
numerous reviews of mouse models of SLE starting
from the foundational work published over 30 years
ago [12] that has been followed by many updates.
Many reviews have focused on specific aspects of
these models, such as the genetic links between
human and mouse SLE [11], or the mechanisms
leading to systemic autoimmunity and clinical
lupus in these models [13]. The present review will
briefly summarize the most common mouse of SLE,
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KEY POINTS

� Spontaneous and induced models of lupus models are
useful tools for the study of the cause and mechanisms
of the disease.

� Mouse models of lupus have advanced the field
through the identification therapeutic targets and the
evaluation of corresponding treatments in
preclinical studies.

� Each model shares specific subsets of attributes with the
disease observed in humans, which provides
investigators a tool to tailor to their specific needs.
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stressing their unique features. We will then provide
an update on the major advances they have con-
tributed to the field, and whenever possible, we will
discuss the advantage of using one model over the
others to test a specific hypothesis.
SPONTANEOUS MOUSE MODELS OF
SYSTEMIC LUPUS OF ERYTHEMATOSUS

NZB/W F1

In 1960s, the NZB/W F1 model of lupus referred to
the F1 hybrid between the NZB and NZW strains [3].
NZB mice show limited hemolytic autoimmune
anemia, whereas NZW mice are nonautoimmune.
However, their F1 hybrids develop severe lupus-
like phenotypes, including a strong female bias,
splenomegaly, elevated serum ANA mostly directed
 Copyright © 2017 Wolters Kluwe

Table 1. Classical mouse models of lupus

Mouse model Generation/protocol

Spontaneous models

NZB/W F1 [3] F1 hybrid between NZB and NZW strains

NZM2410/2328 [4–6] Backcross between NZB/W F1 and NZW
followed by brother–sister mating

MRL/lpr [7] lpr mutation in Fas gene on MRL
background

BXSB/Yaa [8] Backcross of (B6 X SB/Le) F1 to SB/Le

Induced models

Pristane-induced lupus [9] i.p. injection of pristine

cGVHD [10] (1) DBA!BDF1 (injection of spleen cells)

(2) B6$B6.Bm12 (injection of spleen cells)

cGVHD, chronic graft-versus-host disease; IC, immune complexes.

1040-8711 Copyright � 2017 Wolters Kluwer Health, Inc. All rights rese
against DNA. Immune complex-mediated nephritis
develops by 5–6 months of age, leading to renal
failure and death at 10–12 months of age [12].
Overall, NZB/W F1 is a classic model used to study
the genetic underpinning of SLE [11] as well as drug
responses in many preclinical studies, including the
inhibition of B cell activating factor (BAFF) [14], the
role of type 1 interferon [15] and the identification
of biomarkers of lupus nephritis [16].
New Zealand Mixed

An accidental backcross between NZB/W F1 and
NZW followed by brother–sister mating generated
27 different recombinant inbred strains of New Zea-
land Mixed (NZM) mice among which NZM2328 and
NZM2410 are now used as lupus models [4–6]. The
clinical manifestations in NZM strains are similar to
that of NZB/W F1 mice, whereas there are some
differences in renal disorder [16,17] and the response
to BAFF inhibition [18]. The main advantage of
the NZM strains over NZB/W F1 is that they have
homozygous genomes, which has facilitated genetic
analyses [11]. From the NZM2410 strain, a novel
congenic model has been produced that combines
the three susceptibility loci, Sle1, Sle2 and Sle3, that
are necessary and sufficient to induce a lupus phe-
notype on a nonautoimmune C57BL/6 (B6) genetic
background [19]. The B6.NZM2410.Sle1.Sle2.Sle3
has the unique advantage to share 95% of its
genome with B6, providing a robust control for
immunological and genetic studies. The correspond-
ing single (mostly Sle1) and bicongenic (Sle1.Sle3) are
r Health, Inc. All rights reserved.

Sex bias Main clinical manifestations

Female Lymphadenopathy, splenomegaly, anti-dsDNA IgG,
IC-mediated GN

Female Overlaps with NZB/W F1

Both Lymphadenopathy due to accumulation of DN
B220þ T cells, DNA and RNA-directed
autoantibodies, IC-mediated GN and dermatitis

Male Lymphadenopathy, anti-DNA, RNA and gp70
autoAbs, monocytosis, IC mediated GN

Female Type I interferon mediated, autoAb, GN, arthritis,
anemia, serositis (strain dependent)

Female AutoAb, GN, polyclonal B-cell and T-cell activation,
proteinuria (CD8þ T cell dependent)

Female AutoAb, GN, polyclonal B-cell and T-cell activation,
proteinuria (donor CD4þ T-cell dependent)

rved. www.co-rheumatology.com 435



Systemic lupus erythematosus and Sjogren syndrome
well suited to breed to B6-based gene knockouts. For
instance, deletion of the plasmacytoid dendritic
cells (pDC)-specific transcription factor Tcf4 in
B6.Sle1.Sle3 mice provided genetic evidence that
pDCs are critically involved in the development of
SLE [20

&

].
MRL/lpr

The MRL strain was developed by crossing several
stains, including LG/J, C3H/Di, C57BL/6 and AKR/J
[12]. One of the MRL substrains carrying a spon-
taneous mutation named lpr for lymphoprolifera-
tion developed an SLE-like phenotype characterized
by accumulation of double negative (CD4�CD8�)
B220þ T cells. Double negative T cells are autoreac-
tive [21] and expanded in SLE patients [22], making
this model specifically relevant to SLE pathogenesis.
Lpr corresponds to nonfunctional transcripts of the
Fas gene, a major regulator of apoptosis in immune
cells [23]. Both male and female MRL/lpr mice are
affected and produce autoantibodies against dsDNA
and Sm, leading to large amounts of immune com-
plex that induce renal and skin disorder [7]. MRL/lpr
mice develop a massive lymphadenopathy that is
not observed in SLE patients. However, in addition
to expanded double negative T cells, this model has
the advantage of a rapid and severe disease develop-
ment as compared with the other spontaneous
models. Notably, the MRL/lpr strain has been used
to dissect the role of toll-like receptor 7 and TLR9 in
lupus [24], to compare TLR activation in B cells and
dendritic cells [25] and to dissect the development
of extrafollicular autoreactive B cells [26

&

]. In
addition, B6.lpr mice, which develop systemic auto-
immunity without clinical disorder and a reduced
lymphadenopathy, have been used to investigate
various pathways, including the involvement of
Th17 T cells in lupus [27].
BXSB/Yaa

A recombinant inbred strain derived from the back-
cross of (B6 X SB/Le) F1 to SB/Le, termed BXSB/Mp
(BXSB/Yaa), develops a lupus-like disease with lym-
phoid hyperplasia, immune complex-mediated
nephritis, ANA and high-serum retroviral glyco-
protein gp70 titers [7,28]. Nephritis leads to the
death of BXSB/Yaa males in about 5 months and
BXSB females in 14 months. The rapid-onset disease
in males is attributable to the Y-autoimmune accel-
erator (Yaa) locus, which is due to a translocation
from the X to the Y chromosome, duplicates 16
genes, including TLR7 [29,30]. TLR7 regulates the
activation of the type 1 interferon pathway by RNA
complexes, a critical pathway in SLE pathogenesis
 Copyright © 2017 Wolters Kluwer 
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[31]. Therefore, in spite of its presentation in males,
the BXSB/Yaa strain is uniquely suited to model
the consequences of an overeactive TLR7/Type 1
interferon pathway.
INDUCED MOUSE MODELS OF SYSTEMIC
LUPUS OF ERYTHEMATOSUS

Pristane-induced lupus

Pristane is an isoprenoid alkane found at high con-
centration in mineral oil. Intraperitoneal injection
of pristane is a standard method to obtain ascitic
fluid enriched in mAbs. Antiribonucleoprotein,
anti-DNA and antihistone autoantibodies are found
in BALB/c mice after pristane injections. Pristane-
treated mice also have immune complex deposition
in the kidney causing severe nephritis [32]. Strain
differences in the response to pristane have been
observed [33], illustrating the role of gene/environ-
ment interactions in lupus susceptibility. Pristane-
induced lupus is more severe in females than in
males, at least in the SJL strain [34]. Pristane-induced
lupus is driven by a strong type 1 interferon response
[35], and this model is, therefore, well suited to
investigate the type 1 interferon signature present
in many SLE patients, but much weaker in spon-
taneous mouse models of this disease. This model is
also useful to test the impact of a specific gene on
lupus development directly in a nonautoimmune
strain, such the protective effect of TLR9 evaluated
in BALB/c.Tlr9�/� mice treated with pristane [36

&

].
Chronic graft-versus-host disease models

Induced chronic graft-versus-host disease (cGVHD)
models require injections of donor lymphocytes
into a semiallogenic recipient to induce a lupus-like
syndrome. In the parent! F1 model, DBA/2 strain
spleen cells are injected into (C57BL/6 X DBA/2) F1
(BDF1) recipients, whereas in the other, B6 spleen
cells are injected into class II major histocompati-
bility complex-missmatched B6.bm12 recipients or
reversely. In both models, donor CD4þ T cells react
to host B cells triggering the polyclonal activation
of autoreactive B cells, and eventually, lupus-like
syndrome [10]. Compared with the other models,
cGVHD is easy to control, adjustable to investi-
gator’s needs and generally presents with a reduced
interindividual variability. In addition, autoim-
mune and clinical manifestations of SLE develop
relatively rapidly over a period of weeks, instead
of months for the other models. Finally, because
the activation and expansion of donor T cells play
an essential role in cGVHD response, it is easy to
track them relative to host cells by flow cytometry.
Health, Inc. All rights reserved.
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These models also allow the study of the effect of
treatments or genetic modifications in donor cells to
alter the course of the cGVHD response. The bm12
model is particularly useful to test the effect of single
genes or alleles on the development of systemic
autoimmunity on a B6 genetic background. This
approach has been used to evaluate Slamf6 isoforms
as lupus susceptibility alleles for the Sle1b locus
[37,38], and to identify the association of a naturally
occurring polymorphism in the G-CSF gene with
resistance to autoimmune activation [39,40].
RECENT INVESTIGATIONS OF
THERAPEUTIC TARGETS WITH MOUSE
MODELS OF LUPUS

Table 2 lists recent treatments or genetic approaches
that have been used in mouse models of lupus.
 Copyright © 2017 Wolters Kluwe

Table 2. Treatments tested in mouse models of systemic lupus of

Gene target Cell target Model

T-cell targets

Cellular metabolism CD4 T cells B6.Sle1.Sle2.Sle3
BWF1
B6.lpr

M
d

Cellular metabolism CD4 T cells cGVHD

Cellular metabolism CD4 T cells cGVHD

B7-1 T-cell-APC
interaction

Pristane-induced B7-1

ICOS-B7RP-1 Tfh BWF1 An

ICOS-B7RP-1 Tfh MRL/lpr ablatio
in

IL-21 Tfh B6.Sle1.Yaa A

IL-21 Tfh cGVHD

IL-21 Tfh MRL/lpr, BWF1, BXSB

B-cell targets

BAFF B cells MRL/lpr

BAFF B cells NZM2328 KO B

BTK B cells BWF1,MRL/lpr,
pristane-induced, BXSB

Vario

miR-148 B cells MRL/lpr Incr

miR-155 B cells B6.lpr

Proteasome Plasma cells BWF1,MRL/lpr Prote

Other targets

NLRP3 Macrophages BWF1 N

NLRP3 Macrophages Pristane-induced NLR

IRAK4 TLR pathway BWF1, MRL/lpr IR

Topoisomerase I dsDNA binding MRL/lpr To

ANA, antinuclear autoantibodies; B7RP-1, B7-related protein-1; BAFF, B cell activati
T-cell COStimulator; IRAK4, IL-1R-associated kinase 4; ROS, reactive oxygen species

1040-8711 Copyright � 2017 Wolters Kluwer Health, Inc. All rights rese
T-cell targets

Cellular metabolism has been identified as a major
checkpoint of CD4þ T-cell effector functions [67].
Consequently, manipulating T-cell metabolism
may be a promising avenue to treat immune-related
diseases [68]. In lupus mice as well as SLE patients,
CD4þ T cells have an elevated metabolism. Treat-
ment with a combination of metformin and
glucose inhibitor 2-deoxyglucose normalized T-cell
metabolism and reversed disease in several mouse
models of SLE [41

&&

,42
&

]. Natural compounds iso-
garcinol and quercitrin ameliorated disease in
a cGVHD mouse model by decreasing CD4þ T-cell
activation as well autoantibody production [43,44].
Quercitrin is a derivative of quercetin, a glycolytic
inhibitor, suggesting that metabolic inhibition
was a mechanism responsible for the therapeutic
effect.
r Health, Inc. All rights reserved.

erythematosus

Treatment Main manifestations Reference

etformin, 2-
eoxyglucose

AutoAb#, GN#
Immune activation#

[41&&,42&]

Isogarcinol Proteinuria#, autoAb#, GN# [43]

Quercitrin Proteinuria#, autoAb#, GN# [44]

shRNA and anti-
B7-1 mAb

ANA#, anti-dsDNA IgG# [45,46]

ti-ICOS-B7RP-1 Proteinuria#, anti-dsDNA IgG# [47]

n of ICOS ligand
CD11cþ cells

Kidney/lung inflammation# [48&&]

nti-IL-21 MAb GC B cells#, CD138hi#
IgG2c#, autoantibodies#

[49]

IL-21 Host B cell#, autoantibody#,
renal disease#

[50&]

IL-21R Fc IgG#, proteinuria#, antidsDNA# [51,52&,53]

BAFF-R Fc Tertiary lymphoid structures and
nephritis#

[54]

CR3 with TACI or
BCMA

BAFF-BCMA and/or BAFF-TACI
combinations contribute to SLE

[55]

us Btk inhibition GN#, ANA#, IC# [56–59]

eased miR148 GN# [60&&]

miR155 KO ANA# B-cell signaling# [61]

asome inhibitor ANA#, GN#, Survival" [62]

LRP3 inhibitor ROS/ NAPDH/COX-2#, GN# [63]

P3 gain-function Proteinuria" and GN" [64]

AK4 inhibitor Proteinuria#, dsDNA#, GN# [65]

poisomerase I
inhibitor

Nephritis and skin lesions# [66]

ng factor; COX, cyclooxygenase-2; IC, immune complexes; ICOS, Inducible
; Tfh, T follicular help cells.
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The interactions between B7-1 and 2 on the
B cell/antigen presenting cell side and CD28/
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)
on the T cell side are cardinal regulatory pathway of
the immune response, and there have been numer-
ous attempts to target them therapeutically [69].
Based on studies in mouse models, CTLA-4-Ig (aba-
tacept) is now in clinical trial for the treatment of
lupus nephritis [70]. In the pristane-induced lupus
model, the specific blockade of the interaction
between B7-1 and CD28 decreased serum ANA
and antidsDNA IgG [45].

T follicular help cells (Tfh) are a CD4þ helper
T-cell subset specialized for provision of help of B
cells which plays an essential role in germinal center
formation, affinity maturation and the development
of most high-affinity antibodies [71]. Tfh cells are
expanded in mouse models of lupus, and the level of
circulating Tfh cells correlates with disease severity in
SLE patients [72]. Consequently, therapeutic target-
ingof Tfh cells has been proposed forSLEpatients and
lupus mouse models through the IL-21, Inducible T-
cell COStimulator (ICOS) and OX40 pathways.
Genetic approaches or a soluble IL21R-Fc protein
have demonstrated that blocking the IL-21 pathway
prevented or greatly ameliorated disease in several
mouse strains [52

&

,73]. A recent preclinical study
showed that treatment of B6.Sle1.Yaa mice with an
anti-IL-21 antibody reduced germinal center B cells,
CD138hi plasmablasts, IFN-g-dependent IgG2c pro-
duction and autoantibodies, indicating that Tfh cell-
derived IL-21 is critical for pathological B cell cues in
lupus [49]. However, targeting the IL-21 pathway
may have unintended consequences in CD8þ T cells.
In BXSB.Yaa, IL-21 signaling is essential for the main-
tenance of CD8þ suppressor T cells [74]. Moreover, in
the parent! F1 cGVHD model, treatment with IL-21
strongly promoted donor CD8þ T-cell expansion and
rescued defective donor antihost CTLs, resulting in
host B-cell elimination, decreased autoantibody
levels and attenuated renal disease, despite evidence
of concurrently enhanced CD4þ T cell help for B cells
[50

&

]. Another approach to eliminate Tfh cells has
been to target ICOS/B7RP-1 interactions. Treatment
of NZB/W F1 mice with an anti-B7RP-1 antibody
decreased the number of Tfh cells and germinal
center B cells and ameliorated disease manifestations
[47]. It is also been reported that the selective ablation
of ICOS ligand in CD11cþcells, but not in B cells,
dramatically ameliorated kidney and lung inflam-
mation in MRL/lpr mice [48

&&

].

B-cell targets

BAFF is a cytokine that is required for B-cell develop-
ment and survival. Largely based on studies in
mouse models [75], BAFF blockade has been the first
 Copyright © 2017 Wolters Kluwer 
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and only biologic treatment approved to treat lupus.
BAFF also plays a previously unappreciated role in
lupus nephritis by inducing renal tertiary lymphoid
structures and regulating the position of T cells in
the glomeruli of MRL/lpr mice [54]. Moreover,
genetic approaches in the NZM2328 mice demon-
strated that the three BAFF/APRIL receptors (BAFF-R,
TACI and BCMA) have compensatory roles, sug-
gesting a therapeutic benefit to target multiple
receptors [55].

Bruton’s tyrosine kinase (Btk) regulates signal-
ing downstream of the B-cell receptor and Fcg recep-
tor, and it is also involved in TLR signaling.
Treatment with Btk inhibitors alleviate lupus symp-
toms in MRL/lpr [56], NZB/W F1 [57,58], B6.Sle1.Sle3
[76] and BXSB.Yaa mice [59] as well as in pristane-
induced lupus [59]. Overall, based on these preclin-
ical studies, US Food and Drug Administration-
approved Btk inhibitor ibrutinib has great potential
as a therapeutic agent in SLE.

Finally, two miRNAs have been identified as
potent regulators of B-cell tolerance. Elevated miR-
148a expression impaired B-cell tolerance by promot-
ing the survival of immature B cells after engagement
of the B-cell receptor by suppressing the expression of
the autoimmune suppressor Gadd45a, the tumor
suppressor Phosphatase and tensin homolog (PTEN)
and the proapoptotic protein Bim. Increased expres-
sion of miR-148a facilitated the development of
lethal autoimmune disease in MRL/lpr mice [60

&&

].
Reduction of miR-148a expression upregulated PTEN
in the glomeruli and improved renal function in
MRL/lpr mice. [77]. Conversely, miR155 is overex-
pressed in B cells from B6.lpr mice, and miR155
deletion decreased B-cell activation, autoantibody
production, and autoimmune disorder [61].

Other targets

Abundant immune complexes can trigger the acti-
vation of the NLRP3 inflammasome in macrophages
in SLE patients and in mouse models, leading to cell
dysfunction and tissue damage [78]. In the NZB/W
F1 model, a NLRP3 inhibitor termed ‘Citral’ allevi-
ates lupus symptoms by inhibiting levels of reactive
oxygen species, NAPDH and cyclooxygenase-2 [63].
In the pristane-induced model, a more severe lupus-
like syndrome developed in mice carrying the
Nlrp3�R258W gain-of-function mutation, providing
evidence that NLRP3 plays a role in the develop-
ment of SLE [64]. In a related pathway, serine/threo-
nine kinase IL-1R-associated kinase 4 (IRAK4) is
a regulator of innate immunity involved in TLR
signaling. Treatment with an IRAK4 inhibitor amel-
iorate lupus symptom in NZB/W F1 and MRL/lpr
mice [65]. Finally, it has been proposed that top-
oisomerase I plays a role in anti-dsDNA antibody
Health, Inc. All rights reserved.
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FIGURE 1. Potential therapeutic targets investigated in mouse models of systemic lupus of erythematosus.
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binding, and treatment with a topoisomerase
inhibitor prevented proteinuria and prolonged sur-
vival in MRL/lpr mice [66].
CONCLUSION

The use of murine models has led to discovery of
potential therapeutic targets in diverse signaling
pathways dysregulated in SLE. Immune cells, includ-
ing T cells, B cells, antigen presenting cells and
macrophages, are all potential targets in different
models of SLE (Fig. 1). Clinical lupus is an extremely
complex and diverse disease, and establishment of a
mouse model with all features of the disease is very
difficult. Various mouse models of SLE, spontaneous,
induced or genetically engineered, have been used
during the past 30 years, to answer the question of
how the alteration of the immune system and target
organs leads to break of tolerance to self.
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 CURRENT
OPINION Metabolic abnormalities and oxidative stress

in lupus

Yaima L. Lightfoot�, Luz P. Blanco�, and Mariana J. Kaplan

Purpose of review
Upon antigen exposure, immune cells rely on cell-specific metabolic pathways to mount an efficient immune
response. In autoimmunity, failure in critical metabolic checkpoints may lead to immune cell hyperactivation
and tissue damage. Oxidative stress in autoimmune patients can also contribute to immune dysregulation
and injury to the host. Recent insights into the immune cell metabolism signatures, specifically associated
with systemic lupus erythematosus (SLE) and the consequences of heightened oxidative stress in patients,
are discussed herein.

Recent findings
Glucose metabolism inhibitors, mechanistic target of rapamycin pathway modulators, and peroxisome
proliferator-activated receptor gamma-activating compounds demonstrate therapeutic benefit in
experimental models of lupus. Mitochondrial-derived reactive oxygen species (ROS) and molecular
modifications induced by oxidative stress appear to be detrimental in lupus. Effective therapies tailored
toward the reconfiguration of metabolic imbalances in lupus immune cells and the reduction of
mitochondrial ROS production/availability are currently being tested.

Summary
A paucity of knowledge exists regarding the metabolic needs of a number of immune cells involved in the
pathogenesis of SLE, including myeloid cells and B cells. Nonetheless, SLE-specific metabolic signatures
have been identified and their specific targeting, along with mitochondrial ROS inhibitors/scavengers,
could show therapeutic advantage in lupus patients.

Keywords
immune cell activation, immunometabolism, oxidative stress, reactive oxygen species, systemic
autoimmunity, systemic lupus erythematosus

INTRODUCTION

The emerging field of immunometabolism has pro-
vided critical insights into the metabolic changes
that immune cells undergo upon activation [1,2].
Reprogramming of immune cell metabolism is
required to sustain the energy demands of effector
functions such as differentiation, clonal expansion,
secretion of proinflammatory mediators, phagocy-
tosis, and tissue migration. Importantly, defects in
key metabolic pathways/checkpoints have been
identified in autoimmunity [3,4].

Systemic lupus erythematosus (SLE) is an auto-
immune syndrome characterized by dysregulated
innate and adaptive immune responses and
enhanced risk for multiorgan damage and cardio-
vascular disease [5]. As dysfunctional metabolic
reprogramming can directly influence and exacer-
bate defective immune responses, interrogation of
the metabolic status of immune cells in SLE has
become a topic of interest [3]. Although recent

studies have aimed to characterize the bioenergetics
of differentiated/activated CD4þ T cells in SLE, less is
known regarding the metabolic configuration of
other immune cells implicated in the pathogenesis
of lupus. Moreover, SLE is associated with enhanced
oxidative stress, as well as an increased prevalence of
metabolic syndrome, features that also contribute
to accelerated atherosclerosis and cardiovascular
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KEY POINTS

� Disease-specific immunometabolic imbalances and
excess oxidative stress are characteristics of SLE.

� Reconfiguration of metabolic defects in lupus immune
cell subsets has therapeutic potential in experimental
models and in isolated human cells.

� A better understanding of immune cell-specific
metabolic dysfunction in lupus is needed for improved
treatment options.

� Excessive mitochondrial ROS production in lupus is
associated with multiple pathogenic pathways in
disease progression.

� Combination therapies targeting immunometabolic and
mitochondrial ROS could have synergistic effects
in SLE.

Metabolic abnormalities and oxidative stress in lupus Lightfoot et al.
events in this disease. Nutrients, in addition to
providing sources of energy, can also promote
the activation of immune cells depending on their
quality (i.e., oxidation) and availability (i.e., over-
nutrition). Consequently, a better understanding of
the breakdown in host metabolic control, aberrant
immune cell metabolism, oxidative stress, and the
crosstalk between these phenomena, will be a
worthwhile effort toward the development of
improved treatment options for SLE patients.

In this review, we consider the most recent
investigations related to immunometabolism and
redox status in SLE, as well as discuss potential
metabolic targets that may lead to the resolution
of inflammation and the attainment of energy
homeostasis in lupus patients. Where information
is lacking, we explore immunometabolism-related
advances in the oncology field, which may inform
future areas of study in autoimmunity.
METABOLISM AND ITS REGULATION IN
LYMPHOCYTES

Glucose catabolism is the primary source of ATP
generation in the immune system. Although resting
lymphocytes rely on oxidative phosphorylation
(OXPHOS) to produce ATP, activated T and B cells
shift their metabolic configuration toward aerobic
glycolysis, whereby pyruvate is reduced to lactate
even in the presence of oxygen. Intermediates of
glycolysis can then enter the pentose phosphate
pathway, where anabolic building blocks and reduc-
ing equivalents are generated. This metabolic switch
is known as the Warburg et al. [6] effect.

The transcription factor c-Myc is critical in driv-
ing the activation-induced reprogramming of T cells
 Copyright © 2017 Wolters Kluwe
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by targeting a range of glycolytic genes [7]. The
transcription factors estrogen-related receptor a

and hypoxia inducible factor-1a, which responds
to oxygen levels, also promote the expression of
genes involved in metabolic reconfiguration
[8–10]. Among these genes, the expression of
GLUT1, the major glucose transporter found on T
cells, is highly upregulated following T-cell receptor
(TCR) engagement and under hypoxic conditions
[11,12

&&

]. Indeed, T-cell-specific overexpression of
Glut1 did not alter T-cell development but aug-
mented effector functions upon activation, and
ultimately resulted in signs of autoimmunity in
older mice [11]. Recently, the differential expression
of GLUT1 on healthy donor-derived T cells was
shown to modulate their effector function, with a
direct correlation noted between GLUT1 levels and
TCR-induced proliferative ability, as well as with
IFNg-secretion capacity [12

&&

].
Similar to the positive transcriptional control of

glycolytic genes by the aforementioned factors,
negative regulators of glucose metabolism exist.
Recent work by Chan et al. [13

&&

] demonstrates that
the transcription factors PAX5 and IKZF1, which are
important for B-cell development, are charged with
restricting ATP levels in B cells and thus, preventing
leukemic transformation. Another recently reported
regulator of B-cell metabolism is the metabolic
sensor Gsk3 [14

&&

], which was shown to limit
glucose consumption and maintain quiescence.
Along the same lines, B-cell-specific deletion of
the adaptor protein Traf3 results in enhanced B-cell
survival, which depends on elevated glucose meta-
bolism and is achieved through the upregulation of
Glut1 and hexokinase 2, an enzyme that catalyzes
the first step in glycolysis [15

&&

]. It will be of interest
to determine whether the expression of these regu-
latory factors is negatively affected in animal models
of lupus and in patients with SLE. Indeed, B cells
chronically stimulated with B-cell activating factor,
a cytokine associated with SLE [16], have been
shown to undergo metabolic reprogramming (i.e.,
enhanced glycolysis), and subsequently synthesize
more antibodies [17], indicating that defects in the
control of B-cell metabolism reconfiguration might
influence the pathogenesis of SLE.

In addition to glucose, amino acids are import-
ant substrates for lymphocytes as they provide a
source of energy as well as precursors required for
de novo synthesis of nucleic acid and proteins
[18

&&

,19
&&

,20
&

]. Lipids and fatty acids (FAs) are also
critical nutrients for lymphocytes; not only are they
integral components of cell membranes, but they
are also a high-energy source [21

&&

,22
&&

]. To date, the
overarching theme in lymphocyte metabolism is
that, as opposed to the glycolytic phenotype of
r Health, Inc. All rights reserved.
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activated effector T cells, memory and regulatory T
cells (Tregs) can also metabolize amino acids and
FAs, and generate ATP through OXPHOS. In con-
trast, activated B cells increase glycolysis and
OXPHOS equally. The details of these pathways
are beyond the scope of this review and have been
extensively described elsewhere [23–29].
TARGETING METABOLIC PATHWAYS IN
SYSTEMIC LUPUS ERYTHEMATOSUS
LYMPHOCYTES

In contrast to the glycolytic switch of activated
healthy lymphocytes, repetitive TCR-engagement
in lupus was previously suggested to result in the
preferential use of OXPHOS through enhanced
mitochondrial metabolism [30]. However, more
recent work showed that SLE CD4þ T cells exhibit,
not only higher basal and activated mitochondrial
oxidative metabolism, but also higher glycolytic
activity [31

&&

]. Accordingly, combination therapy
with metformin, which transiently inhibits mito-
chondrial respiratory-chain complex 1 resulting in
downmodulation of mitochondrial respiration, and
2-deoxy-D-glucose (2-DG), a glycolytic inhibitor,
ameliorated disease disorder in an experimental
model of SLE [31

&&

]. Interestingly, when the
reduction of pyruvate to lactate was blocked in
the same mice with dichloroacetate, a drug that
enhances the import of pyruvate into the mitochon-
dria for oxidation, no improvements were noted
[31

&&

]. In addition, the survival of long-lived plasma
cells, which are associated with pathogenicity in
SLE, was recently found to be dependent on pyru-
vate flux into the mitochondria [32

&&

]. These studies
imply that targeting glucose oxidation (i.e., through
the inhibition of the mitochondrial pyruvate com-
plex), rather than the reversal of the Warburg effect,
could be a putative effective target in SLE patients.
Whether other immune cells in SLE patients meta-
bolize glucose with the same predisposition toward
oxidation remains to be tested.

In addition to dampening mitochondrial respir-
ation, metformin also alters immunometabolism
and inflammation through the activation of 50

adenosine monophosphate-activated protein kinase
(AMPK), a nutrient-sensor that modulates glucose
and lipid metabolism, and brings about the negative
regulation of the mechanistic target of rapamycin
(mTOR). mTOR is a serine/threonine protein kinase
that makes up the catalytic subunit of two protein
complexes, mTOR Complex 1 (mTORC1) and
mTOR Complex 2 [33]. In patients with SLE,
mTORC1 activity is enhanced, and therapeutic
intervention with rapamycin or N-acetylcysteine
(NAC) prevents the proinflammatory cell death of
 Copyright © 2017 Wolters Kluwer 
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CD4�CD8� (double-negative) T cells and the
depletion of Tregs, two reported characteristics of
SLE (reviewed in [34]). Recently, metformin was
also tested in sanroque mice (Roquinsan/san), which
develop lupus-like autoimmunity due to a mutation
in the ubiquitin ligase member, Roquin, a negative
regulator of Tfh cells and autoantibody res-
ponses [35]. Oral administration of metformin in
Roquinsan/san mice, not only normalized T-cell
responses (i.e., reduced the frequencies of Tfh and
Th17 cells, whereas enhancing Treg numbers), but
also suppressed the development of autoantibody-
producing plasma cells and germinal center for-
mation via the AMPK–mTOR signaling pathway
[36

&

]. These studies indicate that elucidating key
metabolic programs involved in the pathogenesis
of SLE may facilitate the modulation of multiple
immune cell subsets with a single target and/or
therapy.

Another factor linking metabolism and auto-
immunity is the peroxisome proliferator-activated
receptor gamma (PPARg). PPARg is a transcription
factor involved in FA and glucose metabolism. Pre-
viously, pioglitazone, a PPARg agonist and drug
used to treat type 2 diabetes mellitus, was shown
to be protective against vascular and renal disease in
murine SLE, whereas also improving the function of
CD4þ T cells derived from SLE patients, suggesting a
protective role of PPARg in autoimmunity [37,38].
In a recent study, Liu et al. [39

&

] investigated the dose
effect of PPARg expression in the immune response
through genetic manipulation. Aged PPARg hypo-
morphic mice developed SLE-like autoimmunity,
which was T-cell-dependent, but showed a Th17
bias, as opposed to the IFNg-association noted in
human SLE T cells [38,39

&

]. The therapeutic poten-
tial of pioglitazone is currently being tested in
patients with SLE (NIH Clinical Research Study
no. 15-AR-0060). Of note, pioglitazone is a member
of a class of compounds, which have been shown to
specifically inhibit pyruvate flux into the mitochon-
dria [40]. Therefore, the protective mechanism of
action of pioglitazone, in addition to PPARg-acti-
vation, might include normalization of the afore-
mentioned defects in pyruvate oxidation in SLE
T cells.
METABOLISM OF OTHER SYSTEMIC
LUPUS ERYTHEMATOSUS-ASSOCIATED
IMMUNE CELLS

Given the range of autoantibodies produced in SLE,
it is not surprising that significant research in the
field has historically focused on the characterization
of B-cell responses and B cell–T cell interactions.
However, an increasing body of work has led to the
Health, Inc. All rights reserved.
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evolution of this B-cell-dominant view to include
other leukocytes, such as natural killer (NK) cells,
dendritic cells, macrophages, and neutrophils [41].
SLE-specific metabolic signatures have not been
systematically explored in these cells; nonetheless,
their activation also results in metabolic reconfigu-
ration. For instance, human NK cells are classified by
the expression of CD56, with CD56dim cells being
the more mature and predominant circulating NK
subset. It was recently reported that CD56bright NK
cells, despite displaying lower cytotoxic capacity,
are more metabolically active upon stimulation,
and this allows them to produce higher levels of
IFNg [42

&

]. Similarly, the metabolism of mast cells is
reprogrammed once activation occurs. In response
to antigen-IgE immune complexes, mast cells
enhance their glycolytic capacity, and, whereas
mitochondrial respiration is not enhanced, it is still
required for effective degranulation of the cells [43].

The activation-induced outcomes of macro-
phage and dendritic cell function are also depend-
ent on the type of metabolism adopted [44–46].
Briefly, classically activated M1 macrophages derive
their energy through glycolysis, whereas alterna-
tively activated macrophages (M2) utilize OXPHOS,
particularly FA oxidation (FAO). Like M1 macro-
phages, activated dendritic cells upregulate their
glucose uptake and lactate production; however,
glycolysis provides metabolic intermediates
required to fuel FA synthesis, whereas ATP is gener-
ated by OXPHOS [47]. In contrast, tolerogenic
dendritic cells, like M2 macrophages, rely on FAO
as their energy source [45]. Of interest, recently
published data indicate that FAO is not needed
for M2 polarization [48

&&

]. Indeed, disruption of
FAO in myeloid cells did not change the degree of
M2 polarization in response to IL-4 [48

&&

]. As the
requirement of FAO in M2 macrophage polarization
was originally demonstrated through chemical inhi-
bition of FAO (i.e., with etoxomir), this study
emphasizes the need for careful interpretation of
experiments involving chemical inhibitors, as these
might have off-target effects. Recent studies also
suggest that inhibition of succinate dehydrogenase
switches proinflammatory macrophage phenotype
into an anti-inflammatory phenotype in which
oxidative metabolism and IL-10 production are
enhanced, whereas glycolysis, mitochondrial mem-
brane potential, succinate oxidation, and mito-
chondrial reactive oxygen species (ROS)
production are reduced [49

&&

]. Furthermore, the
metabolism of plasmacytoid dendritic cells (pDCs)
can be drastically alterered by type I interferons
(type I-IFNs; cytokines crucial in SLE pathogenesis
[50,51

&&

,52
&&

]). Indeed, exposure to type I-IFNs indu-
ces an autocrine pathway of increased OXPHOS
 Copyright © 2017 Wolters Kluwe
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and type I-IFN production in pDCs, which is fueled
by enhanced FAO and dependent on type I-IFN
receptor and PPARa signaling [53

&&

]. This amplifica-
tion pathway may be of particular relevance in SLE.

The metabolic requirements of neutrophils have
been relatively overlooked. This is likely due to the
fact that neutrophils have few, albeit functional,
mitochondria and have been shown to be primarily
glycolytic [54]. However, the energy fluxes that
neutrophils undergo to fulfill the energy require-
ments of chemotaxis, phagocytosis, and the release
of neutrophil extracellular traps (NETs), remain to
be fully elucidated [55–57]. The pathogen-killing
ability of neutrophils is dependent on the activity
of NADPH oxidase (NOX), which comprised Nox2,
p22-phox, p47-phox, and p67-phox. Recently, an
intriguing NOX-glycolysis activation loop was
identified in stimulated neutrophils [58], as Nox2
activity was required for the stimulation-induced
increase in glycolysis. The latter was also dependent
on the phosphorylation of 6-phosphofructo-2-
kinase (PFK-2) [58]. PFK-2 catalyzes the production
of fructose-2,6-biphosphate, which activates phos-
phofructo-1-kinase, the rate-limiting enzyme of gly-
colysis. In addition, asymmetric mTOR signaling
and OXPHOS were recently implicated in the che-
motaxis of neutrophils [59]. In regards to NET
release, metformin was previously found to inhibit
NET formation, or NETosis, in vitro [60]. Still,
whether this effect was in fact due to a direct con-
tribution of OXPHOS to NETosis, or due to a
reduction in mitochondrial ROS production and,
therefore, lower generation of immunogenic oxi-
dized mitochondrial DNA (mtDNA) [51

&&

], remains
to be determined.
ROLE OF REACTIVE OXYGEN SPECIES IN
TISSUE DAMAGE AND IMMUNE CELL
ACTIVATION IN LUPUS

ROS have been associated with a variety of disorders
due to their capacity to modify cellular components
and metabolites. In lupus patients, heightened
oxidative stress results in increased levels of oxidized
lipoproteins, which are pathogenic in vivo and
induce further oxidative damage [61]. In fact,
lupus HDL, which tends to be oxidized in patients,
lacks vasculoprotective properties and instead
promotes proinflammatory responses [62]. More-
over, increased cell membrane lipid peroxidation
in lupus can lead to the formation of lipid-derived
reactive aldehydes (LDRA), including malondialde-
hyde (MDA), phosphorylcholine, and 4-hydroxyno-
nenal (4-HNE), which can then bind to and alter
proteins, rendering these immunogenic [63,64].
Counterintuitively, 4-HNE has been recently shown
r Health, Inc. All rights reserved.
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to inhibit neutrophil function, including glycolysis,
phagocytosis, and oxidative burst [65

&

]; however,
NET-formation capacity and mitochondrial ROS
production were not explored. A recent study
reported that the presence of LDRA-specific immune
complexes correlates with disease activity in lupus
patients [66], supporting a proinflammatory role of
these lipid modifications. In another study, IgM
antibodies against MDA and phosphorylcholine
were found to negatively correlate with markers
for atherosclerosis risk, in association with
enhanced apoptotic cell death clearance and
reduced LDRA-induced oxidative stress upon IgM
binding [67

&

]. Cell damage associated with excessive
exposure to oxidative stress and other environmen-
tal factors can be assessed by quantification of
histone H2AX phosphorylation, which is indicative
of DNA double-strand breaks. In accordance with
enhanced oxidative stress in lupus, H2AX phos-
phorylation was found to be elevated in peripheral
blood cell subsets and correlated with disease
activity [68]. These data implicate lipoprotein-medi-
ated pathways and oxidative stress in particular in
the increased tissue damage and propensity of car-
diovascular events in lupus patients.

Conversely, a deficiency in NOX2 activity, due
to a missense mutation in the p47phox (NCF1)
subunit of NOX, is associated with enhanced risk
to develop lupus and other autoimmune diseases
[69

&&

]. Further, when greater copy numbers of NCF1
are present, corresponding with enhanced NOX2-
derived ROS, protection against lupus was reported
[69

&&

]. This is akin to individuals with chronic gran-
ulomatous disease, which lack NOX activity and
have an increased risk for autoimmune disease
development and exhibit type I-IFN signatures
[70]. Thus, the source and location of ROS pro-
duction appears to be important for disease patho-
genesis. Indeed, in a recent study, stimulation of
neutrophils with ribonucleoprotein-immune com-
plexes, led to increased levels of mitochondrial
ROS, which resulted in mitochondria hypopolariza-
tion and the release of NETs enriched in oxidized
mtDNA [51

&&

]. Low-density granulocytes (LDGs), a
distinct subset of proinflammatory, NETosis-prone
neutrophils present in the peripheral blood of SLE
patients [71], also display enhanced mitochondrial
ROS synthesis [51

&&

]. NETosis in LDGs is at least in
part dependent on mitochondrial ROS production,
as treatment with the mitochondrial ROS scavenger
MitoTempo significantly abrogates the extrusion of
NET structures in these cells [51

&&

]. Neutrophils
exposed to extracellular superoxide also display
enhanced NET formation and this is associated
with concomitant liver injury [72]. Of consequence,
the study by Lood et el. [51

&&

], demonstrated that
 Copyright © 2017 Wolters Kluwer 
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oxidized mtDNA has interferogenic potential
through a Transmembrane protein 173 (STING)-
dependent pathway. Various cell subsets and path-
ways have been shown to be drivers of type I-IFN
production in lupus [50,51

&&

,52
&&

,73
&&

]. Despite the
pathogenic role of type I-IFNs in SLE, these cyto-
kines are crucial in the protection against viruses.
During a viral infection, mitochondrial antiviral
signaling (MAVS) protein forms a complex with
retinoic acid gene I (RIG-I)-like helicases to promote
the expression of type I-IFN genes. Buskiewicz et al.
[74

&&

] recently showed that in lupus patients,
enhanced mitochondrial ROS synthesis led to
RIG-I-independent MAVS oligomerization and
subsequent type I-IFN production independent of
infection. Taken together, these results suggest that
mitochondrial dysfunction and ROS production
contribute to the pathogenesis of lupus. However,
the mechanisms leading to enhanced mitochon-
drial ROS production in SLE remain to be fully
elucidated. In line with studies mentioned above,
multiple mitochondria-related parameters, includ-
ing ROS production, mitochondria swelling, polar-
ization status, enzymatic activity of mitochondrial
complexes, and levels of mediators of the intrinsic
pathway of apoptosis, were recently demonstrated
to be altered in lupus patients compared with
healthy volunteers [75

&

]. In lupus-prone mice, liver
mitochondrial dysfunction has been shown to be
controlled by mTORC1 and is, therefore, responsive
to rapamycin treatment [76]. Given the reduced
expression of the mitophagy facilitator dynamin-
related protein 1 preceding lupus onset [76],
accumulation of damaged mitochondria is a likely
culprit in disease progression. Furthermore, mito-
chondrial Complex I dysfunction and subsequent
mitochondrial ROS production induced by imiqui-
mod (a Toll like receptor 7 agonist and mediator of
lupus-like disease [77]), led to NLRP3 inflammasome
activation in a recent study [78

&

]. As NLRP3 inflam-
masome activation has been associated with SLE
pathogenesis [79], the aforementioned study
provides additional evidence potentially linking
mitochondrial defects in lupus with downstream
proinflammatory cascades that promote disease
progression.
IMMUNOMETABOLISM THERAPEUTIC
TARGETS AND SYSTEMIC LUPUS
ERYTHEMATOSUS

Signatures corresponding with metabolic imbalan-
ces and elevated oxidative stress have been ident-
ified in the sera of lupus patients [80]. Accordingly,
targeting metabolic defects in animal models of SLE
with the combination of metformin and 2-DG
Health, Inc. All rights reserved.
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FIGURE 1. Simplified overview of the metabolism in lupus immune cells. Enhanced glucose internalization leads to subsequent
incremented glycolysis, oxidation by mitochondria and penthose phosphate pathway generating reducing equivalents and
nucleotides. Positive regulators are estrogen-related receptor a, hypoxia inducible factor-1a, and v-myc avian
myelocytomatosis viral oncogene homolog. B-cell-specific negative regulators include: paired box 5, IKAROS family zinc
finger 1, glycogen synthase kinase 3, and TNF receptor associated factor 3. 2-deoxy-D-glucose inhibits glycolysis while
mitochondrial reactive oxygen species, 5’adenosine monophosphate-activated protein kinase and mechanistic target of
rapamycin are inhibited by metformin. Pioglitazone activates the peroxisome proliferator-activated receptor gamma signaling
pathway and prevents the transport of pyruvate into the mitochondria. Amino and fatty acids are additional fuel sources
required for immune cell activation and function.

Metabolic abnormalities and oxidative stress in lupus Lightfoot et al.
ameliorates disease disorder [31
&&

]. Similarly,
mitochondrial ROS inhibition with MitoTempo
reduces disease severity in a mouse model of lupus
[51

&&

]. In models of skin damage due to oxidative
stress, a topical mitochondria-targeted redox-
cycling nitroxide mitigated the impairment [81].
Whether these therapies can improve human
disease, and whether their combination has syn-
ergistic effects, remain to be determined. In a
recent trial of NAC in SLE, the drug was well
tolerated and reduced disease activity via the
mTOR pathway [82]. Indeed, mTOR pathway
modulators appear to be viable therapies, and
 Copyright © 2017 Wolters Kluwe
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the use of rapamycin as a therapeutic option has
also been tested animal models of lupus and in
humans ([34,76,83,84]; Trial ID: NCT00779194).
The role of the PPARg-agonist pioglitazone is
currently being investigated in proof-of-concept
trials. Information gleaned from the aforemen-
tioned studies and from ongoing investigations
could identify further pathway-specific and
immune cell-specific targets toward the develop-
ment of personalized therapies in SLE (Fig. 1).
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 CURRENT
OPINION Novel insights of microRNAs in the development of

systemic lupus erythematosus

Xiong Lea,�, Xiang Yua,�, and Nan Shena,b,c,d,e

Purpose of review
To provide a brief overview of recent progress in microRNA biogenesis and homeostasis, its function in
immune system and systemic lupus erythematosus (SLE), as well as successful microRNA-based therapy
in vivo.

Recent findings
Stepwise microRNA biogenesis is elaborately regulated at multiple levels, ranging from transcription to
ultimate function. Mature microRNAs have inhibitory effects on various biological molecules, which are
crucial for stabilizing and normalizing differentiation and function of immune cells. Abnormality in
microRNA expression contributes to dysfunction of lupus immune cells and resident cells in local tissues.
Manipulation of dysregulated microRNAs in vivo through microRNA delivery or targeting microRNA might
be promising for SLE treatment.

Summary
Recent advances highlight that microRNAs are important in immunity, lupus autoimmunity and as potential
therapy target for SLE.

Keywords
autoimmunity, microRNA, microRNA therapy, systemic lupus erythematosus

INTRODUCTION

Systemic lupus erythematosus (SLE) is an incurable
autoimmune disease. During the course of disease,
lupus relapse alternates with remission. Although
SLE has been investigated extensively and deeply for
decades, conventional drugs have only limited
therapeutic efficacy and detrimental side effects like
infections, infertility and hepatotoxicity frequently
occur during lifetime medication [1]. Therefore,
novel and specific approaches for SLE treatment
should be explored and eventually employed in
clinical practice.

Upon their discovery, microRNAs have drawn
considerable attention due to their capability of
fine-tuning gene expression with specificity and
fidelity at particular development stages or immune
processes [2]. Recent progress has shown that micro-
RNA expression is tightly regulated during develop-
ment, differentiation and effector phase of immune
cells as well as immunological disorders. In this
review, we will discuss novel findings about micro-
RNA biogenesis and homeostasis, their role in
immune system and SLE and success of micro-
RNA-based treatment in lupus models.

REGULATION OF MICRORNA BIOGENESIS
AND HOMEOSTASIS

MicroRNAs are a class of small noncoding RNAs,
about 22 nucleotides in length, ubiquitously
expressed in different cells and tissues [3,4]. Micro-
RNA biogenesis is a multistep process, which
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KEY POINTS

� Stepwise microRNA biogenesis is modulated by a
complicated regulatory network, involving a large
number of biological molecules.

� In different immune cells, microRNAs display significant
roles in the process of cell development and function.

� The dysfunction of immune cells and resident cells in
SLE is associated with several dysregulated microRNAs.

� Utilizing microRNA either as a genetic target or
exogenous supplement shows curative effects on lupus
mice and might provide hopeful therapeutic method for
clinical use.

Novel insights of microRNAs Le et al.
involves in both nucleic and cytoplasmic fine-tuned
mechanism [5] (Fig. 1). Pri-miRNAs are typically
transcribed by RNA polymerase II either as a single
transcriptional unit or together with their host
genes [6]. Microprocessors, which consist of Drosha
and DGCR8, are then employed to process pri-miR-
NAs into microRNA precursors (pre-miRNA) [7,8].
Noncanonical mirtron bypasses Drosha cleavage
and generates pre-miRNA via splicing and debranch-
ing [9,10]. Exportin 5, cooperating with Ran-GTP,
exports pre-miRNA into the cytoplasm [11,12],
whereas PHAX-exportin 1 pathway is responsible
for m [7] G-capped pre-miRNA cytoplasmic trans-
portation [13]. Dicer further processes pre-miRNA
into a double-strand miRNA/miRNA� duplex [14].
The ds-miRNA complex is then incorporated into
RNA-induced silencing complex together with
Ago2, in which ‘Guide’ miRNA remains but ‘Passen-
ger’ miRNA� is degraded [15].

Owing to a broad spectrum of targeted mRNAs,
microRNAs regulate numerous physiological and
pathological processes. During the last few years,
new mechanisms of microRNA biogenesis have been
further illustrated. MicroRNA biogenesis is exqui-
sitely regulated at multiple levels [16]. So far, canon-
ical pri-miRNA and noncanonical mirtron pathways
have been broadly investigated. In addition, Ago-
tron that originates from short introns but escapes
Dicer cleavage has also been discovered [17]. Inside
the nucleus, a histone H1-like chromatin protein,
HP1BP3 retains pri-miRNA transcript on chromatin
and promotes cotranscriptional pri-miRNA gener-
ation by Drosha–DGCR8 [18]. By virtue of endonu-
clease cleavage and polyadenylation specificactor
3 and ISY1, pri-miR-17�92 forms an intermediate
‘progenitor-miRNA’ and selectively produces pre-
miRNAs [19]. Adenosine deaminase (ADAR1) is
capable of converting adenosine to inosine and
executes RNA editing or RNAi function in the
 Copyright © 2017 Wolters Kluwe
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form of ADAR1/ADAR1 or Dicer/ADAR1complexes,
respectively. Furthermore, in collaboration with
Drosha–DGCR, ADAR1 enhances cleavage efficacy
of microprocessor [20,21]. RNA-binding protein
Rbfox3 is reported to inhibit the recruitment of
microprocessor onto pri-miRNAs, thus downregu-
lating pri-miRNA processsing [22]. In addition, pre-
cise pre-miRNA processing also requires biological
molecule modulation. Tailor, a terminal uridyl-
transferase, preferentially recognizes 30-AG of
mirtron pre-miRNAs and suppresses mirtron matu-
ration [23,24]. By contrast, TUT7/TUT4/TUT2 facili-
tates the terminal uridylyl addition to 1 nt-30

overhang of Group II pre-miRNA, which produces
an optimal substrate for Dicer [25]. After Dicer proc-
essing, the dsRNA is loaded onto Ago protein.
Eukaryotic translation initiation factor 1A that
interacts with Ago promotes Ago2 cleavage activity
in RNA interference as well as Dicer-independent
but Ago2-dependent miR-451 biogenesis [26].
Furthermore, a RING-E3 ubiquitin ligase Roquin is
reported to regulate the homeostasis and function of
mature miR-146a in CD4þ T cells by binding to
mature miR-146a [27

&

] (Fig. 1). Mature microRNAs
are then transported into intracellular compart-
ments or extracellular fluids [28]. Irrespective of
their distribution, microRNAs bind to 30 untrans-
lated regions of target mRNAs, following base pair
principle and thereby resulting in complementary
mRNA degradation or translational repression [29].
MICRORNAS IN THE REGULATION OF
IMMUNE SYSTEM

MicroRNA plays an important role in regulating
gene expression at the posttranscriptional level.
Recent literatures have shown that microRNAs are
critical for the development and function of
immune system, both innate and adaptive compart-
ment [30

&&

,31]. MicroRNA dysregulation is substan-
tially involved in severe immune disorders, like
tumor progression [32], autoimmune and autoin-
flammatory diseases [33].
MicroRNAs in innate immunity

Innate immune system establishes the first defense
line against foreign pathogens. Immune cells like
dendritic cells, macrophages and neutrophils
are key components of innate immunity [34]
(Table 1). Plasmacytoid dendritic cells (pDC) recog-
nize pathogen-derived nucleic acids via toll-like
receptor (TLR)7 or TLR9 and propagate downstream
innate immunesignaling.miR-126 thatwas primarily
related to vascularization has been demonstrated to
maintain the homeostasis and function of pDCs by
r Health, Inc. All rights reserved.
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to microRNA itself and its targeted mRNA. ADAR1, adenosine deaminase; EIF1A, eukaryotic translation initiation factor 1A.
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positively regulating mechanistic target of rapamycin
activity and vascular endothelial growth factor recep-
tor expression [35]. Antigen-presenting cells activate
antigen-specific adaptive immune cells, in which
microRNA plays an essential role. Th17 cells activated
by lung DCs are indispensable for the pathogenesis of
chronic inflammatory disease, pulmonary emphy-
sema. miR-22 has a proinflammatory role and is
robustly upregulated in CD1aþ lung myeloid den-
dritic cells from pulmonary emphysema patients,
while in-vitro study proves that histone deacetylase
(HDAC4) is a major functional target. Strikingly,
administration of locked nucleic acid (LNA) to silence
miR-22 could attenuate activated lung antigen pre-
senting cells and reserve pulmonary emphysema pro-
gression [36]. By directly targeting key signaling
molecules, microRNAs in innate immune cells not
only preserve innate immune homeostasis but also
repress inflammatory responses.
MicroRNAs in adaptive immunity

The underlying mechanisms by which microRNAs
regulate differentiation and function of adaptive
 Copyright © 2017 Wolters Kluwer 
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immune cells, including T-cell and B-cell subsets,
have also been validated as well.
T cells

CD4þ T cells with the deletion of important com-
ponents in microRNA biogenesis, including Dgcr8,
Ago2 or Dicer, display effector T-cell dysregulation,
which suggests that microRNAs may have critical
functions in T-cell biology. Tfh cell is characterized
by highly expressed master transcription factor Bcl6
and chemokine receptor C-X-C motif chemokine
receptor 5. miR-155-Peli1-c-Rel pathway has been
shown to regulate the late differentiation stage and
function of Tfh cells. Upregulated miR-155 acts by
repressing E3 ubiquitin ligase Peli1 and releases c-Rel
from Peli1-mediated ubiquitination and degra-
dation, which promotes Tfh cell proliferation and
GC responses [37]. Opposite to miR-155, miR-146a
inhibits Tfh cell differentiation and function by
perturbing ICOS–ICOSL signaling [38]. In addition,
individual members of miR-23�24�27 cluster
has dissimilar effects on T cells. Unlike miR-24,
miR-23 and miR-27 compromise Th17 and iTreg
Health, Inc. All rights reserved.
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Table 1. miRNAs in immune responses

miRNA Cell type Target gene (s) Gene function Reference (s)

miR-126 pDCs Tsc1 Negative regulator of mTOR [35]

miR-22 mDCs Hdac4 Epigenetic repression [36]

miR-155 Tfh cells Peli1 E3 ubiquitin protein ligase [37]

miR-146a Tfh cells Icos Maintaining T-cell responses [38]

miR-23-24-27 cluster Th2 cells Il-4
Gata3

Inducing Th2 cell differentiation;
Transcriptional activator

[39]
[39,40]

miR-155 Th17 cells Jarid2 Transcriptional repressor [41]

miR-183-96-182 cluster Th17 cells Foxo1 Transcriptional regulator [42&]

miR-17-92 cluster B cells Pten Tumor suppressor [43]

miR-148a B cells Pten
Bim
Gadd45a

Tumor suppressor
Apoptotic activator
Autoimmunity suppressor

[44]

mTOR, mechanistic target of rapamycin.
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differentiation. Moreover, Th2 differentiation is
inhibited by miR-24 and miR-27 by targeting IL-4
and GATA3, respectively [39]. These two microRNAs
collaboratively hamper IL-4 production in Th2-Type
immune response and in-silico analysis further
reveals a series of target genes [40]. Th17 differen-
tiation is prominently associated with miR-155-
Jarid2 pathway. Th17 cells devoid of miR-155 have
elevated Jarid2 protein that recruits Polycomb
Repressive Complex 2 and silences Th17-related
genes [41]. In addition, pathogenic Th17 cell differ-
entiation and effector function are controlled by
miR-183-96-182 cluster. IL-6-signal transducer and
activator of transcription (STAT)3 signaling elicits
miR-183 cluster which directly targets the transcrip-
tion factor Foxo1. Downregulated Foxo1 expression
augments the synthesis of proinflammatory cyto-
kine receptor IL-1R1 and ultimately promotes the
pathogenicity of Th17 cells [42

&

].
B cells

B-cell development requires a sequential process,
from pre-B cells, pro-B cells and immature B cells to
finally mature B cells. Similar to T-cell subsets,
emerging evidence reveals that microRNAs play
essential roles in B-cell development. ‘IgMb-macro-
self’ mouse model harbors no mature B cells in
the spleen and lymph nodes and is extensively
utilized in B-cell development studies [43]. miR-
19, a member of miR-17�92 cluster, functions as
a negative regulator of B-cell central tolerance by
repressing the expression of Pten. Besides, miR-17
accounts for the pro-B to pre-B transition in early B-
cell development through other molecular path-
ways, whereas plausible targets like Pten, Phlpp2
and Bim are excluded [43]. Using the same ‘IgMb-
macroself’ model, another research demonstrates
 Copyright © 2017 Wolters Kluwe
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that miR-148a regulates B-cell tolerance as well. The
cognate binding sites on Gadd45a, Pten and Bim
transcripts are targeted by miR-148a. Further
study shows that upregulated miR-148a in MRL-
lpr mice acts as a possible cause of lupus progression
[44]. Accordingly, great advances might be made
in discovering potent therapeutic targets against
intractable autoimmune diseases, with the ex-
ploration of underlying mechanisms about B-cell
tolerance. And it is evident that individual micro-
RNAs in one cluster have significant impacts on
adaptive immunity in synergistic or antagonistic
ways, implying that defective microRNA regula-
tion might have pivotal roles in immune-related
diseases.
MICRORNAS IN SYSTEMIC LUPUS
ERYTHEMATOSUS

Systemic lupus erythematosus is a multifactorial
autoimmune disease, characterized by pathogenic
autoantibodies production and multiorgan/system
involvement [45]. Of note, renal disease possesses
marked morbidity and mortality [46]. It is well
established that the immunopathology of lupus
nephritis (LN) features immune-complex deposition
and cell proliferation [47]. Given the versatile func-
tions of microRNAs in immune responses, studies
on microRNAs might further illustrate the patho-
genesis of SLE, provide novel biomarkers and poten-
tial therapeutic strategies.
MicroRNA-mediated immune cell dysfunction

Immunopathogenesis of SLE is mainly associated
with innate and adaptive immune system dysfunc-
tion [48], in which pDCs, B cells and T cells are
involved.
r Health, Inc. All rights reserved.
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Table 2. miRNAs expression in SLE

Location miRNA Level Functional target (s) Reference (s)

Immune cells

Dendritic cell miR-155
Let-7c

"
"

Ship1
Blimp1, Socs1

[53]
[54]

B cell miR-155
miR-30a
miR-181b, miR-361
miR-23b, miR-30a, miR-125b

"
"
"
"

Ship1, Acida
Lyn
Acida
Blimp1

[55,57]
[56]
[57]
[57]

T cell miR-29b
miR-31
miR-142-3p/5p
miR-125a
miR-98

"
#
#
#
" (by GCs)

Sp1
RhoA
IL-10, CD84, SAP
Stat3, Ifng, Il13
IL-3, Fas, FasL, TNFRSF1B

[58]
[59]
[60]
[61]
[62]

Resident cells

Renal tubular cell miR-130b " Erbb2ip [63]

Mesangial cell miR-148a-3p
miR-150
miR-744
miR-26a, miR-30b
miR-422a

"
"
"
# (by HER2)
"

Pten
Socs1
Pip1b
———
KLK4

[64]
[65]
[66]
[67]
[68]

Podocyte miR-26a # Actin, vimentin [69]

SOCS, suppressor of cytokine signaling.

Systemic lupus erythematosus and Sjogren syndrome
Activated pDCs constitutively produce type I
interferon, which displays a central role in lupus
onset and progression [49]. Consistently, type I inter-
feron signature in SLE patients are positively corre-
lated with disease severity [50]. Previous studies have
clarified thatmiR-146a in SLEpatients downregulates
type I interferon pathway through targeting inter-
leukin1 receptor associated kinase 1/TNF receptor
associated factor 6, interferon regulatory factor
(IRF)-5 and STAT-1 [51]. Of note, type I interferon
reciprocally inhibits miR-146a generation by accel-
erating the production of DICER inhibitor-MCPIP1
(zinc finger CCCH type containing 12A) which ham-
pers miR-146a maturation [52] (Table 2). Being an
antigen-presenting cell, distinct aspects of pDCs are
modulated by microRNAs. TLR7 stimulation acti-
vates miR-155-Ship1 pathway and increases CD40
on pDCs derived from lupus mice [53]. Blimp1–let-
7c circuit, in which let-7c inhibits Blimp1 and Sup-
pressor of Cytokine Signaling (Socs)1 expression,
regulates proinflammatory cytokines secretion from
pDCs [54]. miR-155 exhibits diverse effects on B-cell
development in germinal centers. miR-155�/�Faslpr

mice display mitigated lupus phenotype, including
lower IgG autoantibodies and alleviative renal lesion.
Absent miR-155 rescues the negative regulator SHIP-
1, thus repressing proliferation and function of B cell
[55]. In addition, elevated miR-30a in lupus periph-
eral B cells posttranscriptionally downregulates Lyn.
Depressed Lyn contributes to lupus B-cell hyperac-
tivity [56]. Of note, HDAC inhibitor can alleviate
 Copyright © 2017 Wolters Kluwer 
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disease severity and autoantibody responses in
MRL-lpr mice in that several microRNAs that are
elicited can silence AID and Blimp-1 and disrupt
B-cell maturation [57].

Increased miR-29b [58], miR-21, miR-148a and
miR-126 in lupus CD4þ T cells repress Dnmt1 and
thus make great contributions to T-cell autoreactiv-
ity by fine-tuning DNA methylation. Lower IL-2
production in lupus is partially ascribed to down-
regulated miR-31 in lupus T cells. RhoA, restored by
attenuated miR-31 alters nuclear factor of activated
T-cells expression and weakens IL-2 promoter
activity [59]. Moreover, downregulated miR-142-
3p/5p results in derepression of IL-10, CD84 and
SAP (SH2 domain containing 1A), which further
leads to lupus T-cell hyperactivity and B-cell hyper-
stimulation [60]. The disruption of Treg-mediated
homeostasis is causal for autoimmunity. MiR-125a
maintains the immunosuppressive capacity of Treg
cells and is down-regulated in lupus CD4þ T cells.
Genes encoding effector T-cell factors like Stat3, Ifng
and Il13 are significantly suppressed by miR-125a
[61]. Intriguingly, conventional medicine like glu-
cocorticoids can influence the expression of several
microRNAs, partially accounting for their pharma-
cological actions in SLE treatment [62].
MicroRNA-mediated resident cell dysfunction

Pathogenic autoantibodies in SLE combine with
self-antigens to form immune complexes, which
Health, Inc. All rights reserved.
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Table 3. miRNA-based therapy in vivo

miRNA Model Administration Therapeutic effects Reference

miR-130b (NZB�NZW) F1 miceþ IFNa miR-130b agomir #proteinuria, #immune complex deposition [70&&]

miR-146a BXSB mice MS2-miR-146a VLPs #autoantibodies, #proinflammatory cytokines [71]

miR-21 B6.Sle123 mice miR-21 LNA #splenomegaly, #CD4/CD8 T-cell ratio [72]

miR-155 B6 miceþ Pristane miR-155 antagomir #DAH, #proinflammatory cytokines [73&&]

DAH, diffuse alveolar hemorrhage; HDAC4, histone deacetylase; LNA, locked nucleic acid; pDC, plasmacytoid dendritic cells; SLE, systemic lupus erythematosus.
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could subsequently deposit in local tissues or circu-
late in body fluids. Other than immune cells infil-
tration, glomerular cells are also responsible for LN
development. MiR-130b-3p promotes epithelial-
mesenchymal transition by targeting ERBB2IP
which negatively regulates transforming growth fac-
tor (TGF-b)-mediated epithelial to mesenchymal
transition [63]. Highly expressed miR-148a-3p in
LN glomeruli promotes mesangial cell proliferation
by directly inhibiting PTEN [64]. In renal proximal
tubule cells and mesangial cells, upregulated miR-
150 results from TGF-b1 stimulation. miR-150 after-
ward targets SOCS1, facilitating the synthesis of
profibrotic proteins and accelerating renal fibrosis
[65]. Type I interferon is highlighted in renal inflam-
matory responses and resident cells injury. Target-
ing phosphatase protein tyrosine phosphatase, non-
receptor type 1, miR-744 in renal mesangial cells
exaggerates type I interferon signaling pathway [66].
Down-regulation of miR-130b in LN kidney is inver-
sely correlated with type I interferon signature,
whereas IRF-1 is identified as its direct target. Upon
IFNa and IRF1 induction, erb-b2 receptor tyrosine
kinase 2 (HER2) preferentially overexpresses in LN.
Mesangial cell proliferation inhibitor, miR-26a and
miR-30b, is downregulated by HER2. It is of central
interest that anti-HER2 therapy is plausible in LN
[67]. In formalin-fixed, paraffin-embedded kidney
specimens from LN patients, miR-422a is signifi-
cantly elevated. Kallikrein-related peptidase 4 is
lessened because of miR-422a’s direct repression,
suggesting the involvement of local factors in LN
disorder [68]. Furthermore, miR-26a decrease in
podocyte causes cell injury via repressing actin
and vimentin [69]. Taken together, those studies
emphasize the significant roles of microRNAs in
resident cells from targeted tissues.
MicroRNA-based therapy for systemic lupus
erythematosus

MicroRNA-based therapy attracts intensive interest
as individual microRNAs in different cells may target
distinct functional genes. Indeed, in-vivo studies
of lupus mice demonstrate that therapeutic strat-
egies, involving exogenous microRNA addition or
 Copyright © 2017 Wolters Kluwe
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pathogenic microRNA elimination, are efficacious
and convenient (Table 3). On one hand, artificial
microRNA replenishment via delivery of exogenous
microRNA or agomir exerts curative effects. Reduced
miR-130b negatively regulates type I interferon sig-
naling pathway in lupus resident mesangial cells.
After miR-130b agomir injection, LN mice have less
proteinuria, immune-complex deposition and renal
pathological changes [70

&&

]. Intravenous injection
of MS2-miR-146a VLPs into BXSB mice increases
mature miR-146a in periferal blood mononuclear
cells, kidney, lung and spleen. Subsequently, signifi-
cantly decreased pathogenic autoantibodies and
proinflammatory cytokines are observed [71]. On
the other hand, diminishing pathogenic microRNAs
is also a useful tactic. Short-term LNA intravenous
injection to silence miR-21 expression successfully
de-represses its target programmed cell death 4,
whereas long-term intraperitoneal injection ameli-
orates splenomegaly, one of the cardinal autoim-
munity manifestations in B6.Sle123 mice [72]. In
addition, in accordance with miR-155�/� mice, dif-
fuse alveolar hemorrhage progression is attenuated
by miR-155 antagomir. The administration of miR-
155 antagomir is executed before/after pristane
injection. Therefore, effectively antagonizing miR-
155 in vivo is potentially a preventive and thera-
peutic method for lupus pulmonary inflammation
[73

&&

]. Notwithstanding those successful animal
trials of microRNAs-centered therapy for SLE,
numerous attempts are still needed for clinical
development. It is inspiring that at present, micro-
RNA therapeutics for cancer, diabetes, scleroderma
and hepatitis C are in clinical trials [74]. With more
specific mechanisms about microRNA biogenesis
and regulation being expounded, searching for
more potent and powerful microRNA candidates
is up-and-coming. Meanwhile, several outstanding
issues such as pharmacokinetics/pharmacodynam-
ics profiles, possible drug toxicities as well as effi-
cient delivery systems [75] remain to be elucidated.
CONCLUSION

There is no doubt that microRNAs are crucial for SLE
development. Individual microRNAs in different
r Health, Inc. All rights reserved.
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cell subsets target various molecular pathways,
which in turn demonstrate the importance of miR-
NAs in a broad range of immune and autoimmune
processes. Past few years have witnessed great prog-
ress in clarifying microRNA’s role in the pathogen-
esis, diagnosis and treatment of SLE, whereas further
attempts are extremely urgent to push forward
microRNA-related biomarkers and therapy into
clinical use.
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 CURRENT
OPINION Antiphospholipid syndrome: an update for clinicians

and scientists

Andrew P. Vreedea, Paula L. Bockenstedtb, and Jason S. Knighta

Purpose of review
Antiphospholipid syndrome (APS) is a leading acquired cause of thrombosis and pregnancy loss. Upon
diagnosis (which is unlikely to be made until at least one morbid event has occurred), anticoagulant
medications are typically prescribed in an attempt to prevent future events. This approach is not uniformly
effective and does not prevent associated autoimmune and inflammatory complications. The goal of this
review is to update clinicians and scientists on mechanistic and clinically relevant studies from the past
18 months, which have especially focused on inflammatory aspects of APS pathophysiology.

Recent findings
How antiphospholipid antibodies leverage receptors and signaling pathways to activate cells is being
increasingly defined. Although established mediators of disease pathogenesis (like endothelial cells and the
complement system) continue to receive intensive study, emerging concepts (such as the role of neutrophils)
are also receiving increasing attention. In-vivo animal studies and small clinical trials are demonstrating
how repurposed medications (hydroxychloroquine, statins, and rivaroxaban) may have clinical benefit in
APS, with these concepts importantly supported by mechanistic data.

Summary
As anticoagulant medications are not uniformly effective and do not comprehensively target the underlying
pathophysiology of APS, there is a continued need to reveal the inflammatory aspects of APS, which may
be modulated by novel and repurposed therapies.

Keywords
antiphospholipid syndrome, complement, endothelial cells, neutrophils, pregnancy loss, thrombosis

INTRODUCTION

Vascular complications, including thrombotic
events, are among the leading causes of morbidity
and mortality in lupus. Antiphospholipid anti-
bodies (aPL), a major driver of thrombosis risk, are
present in up to one-third of lupus patients. When
aPL are associated with certain clinical compli-
cations (either thrombotic or obstetric), a diagnosis
of antiphospholipid syndrome (APS) is assigned
(Table 1) [1]. Beyond lupus-associated APS, approxi-
mately half of APS cases will be diagnosed as a
standalone syndrome (i.e., primary APS) [2].

APS is a leading acquired cause of thrombosis
and pregnancy loss, with an estimated prevalence of
one in 2000 [3]. Framing this risk another way, aPL
can be detected on the order of 10% of the time in
the setting of certain events, including pregnancy
morbidity, stroke, myocardial infarction, and deep
venous thrombosis [4]. Emphasizing the systemic
nature of APS, the diagnosis also portends risk
for cytopenias (especially hemolytic anemia and
thrombocytopenia), mitral and aortic valve lesions,

seizure disorder, accelerated cognitive decline, and
nephropathy in the form of thrombotic microangi-
opathy [5]. The approach to treatment is typically
with anticoagulant drugs, which are not uniformly
effective in preventing recurrent aPL-mediated
thrombosis and pregnancy loss and offer insuffi-
cient protection against the varied ‘noncriteria’
manifestations of APS. Indeed, 44% of ‘triple-
positive’ APS patients (positive testing for anti-
cardiolipin, antibeta-2-glycoprotein I, and lupus
anticoagulant) will develop recurrent thrombosis
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KEY POINTS

� Current standard-of-care therapy for APS does not
explicitly target inflammatory aspects of APS
pathophysiology.

� A better understanding of intercellular and intracellular
signaling pathways in APS has revealed potential drug
targets (i.e., interferons, phosphoinositide 3-kinase,
etc.).

� In addition to the well established cellular mediators of
APS pathogenesis (endothelial cells, platelets, etc.),
there is emerging interest in the contribution of myeloid-
lineage cells. The role of neutrophil extracellular trap
release, in particular, warrants further study.

� Complement activation and deposition continue to be
recognized for their role in APS pathogenesis. Activity
of this pathway may be mitigated by several
medications, including rivaroxaban and
hydroxychloroquine.

� Adjuvant therapeutics, including statins and
hydroxychloroquine, have the potential to improve APS
pregnancy outcomes, based upon animal studies and
small clinical trials.

Antiphospholipid syndrome Vreede et al.
over a 10-year follow-up period (even with the
majority being prescribed anticoagulants) [6].
Furthermore, at least 20% of obstetric APS patients
have adverse outcomes in spite of therapy with
aspirin and low-molecular-weight heparin [7].

Despite its high prevalence and potential for
devastating morbidity, APS pathophysiology has
yet to be fully defined. APS was historically viewed
as a coagulation problem; however, clinical obser-
vations and basic science discoveries are increas-
ingly highlighting a more multifaceted syndrome
 Copyright © 2017 Wolters Kluwe

Table 1. Classification criteria for antiphospholipid syndrome

APS is present if one of the clinical criteria and one of the laborato

Clinical criteria 1. Vascular thrombosis �1 clinical episode o

2. Pregnancy morbidity (a) �1 unexplained d

(b) �1 premature del
because of:

(i) Severe preeclam

(ii) Recognized fea

(c) �3 unexplained c
paternal factors (an

Laboratory criteria The presence of antiphospholipid antibodies on �
(a) Presence of lupus anticoagulant in plasma

(b) Medium-titer to high-titer anticardiolipin anti

(c) Medium-titer to high-titer antibeta-2 glycopro

Adopted from [1].
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with an associated (and perhaps even central)
inflammatory component [8]. Herein, we will dis-
cuss recent discoveries over the past 18 months,
which have continued to increase our understand-
ing of APS pathophysiology. We will also discuss
how this improved basic understanding may trans-
late to new and repurposed therapeutics for APS
(Table 2).
CELL ACTIVATION AND SIGNALING
PATHWAYS: NEW CONCEPTS

Understanding the cellular signaling pathways that
mediate APS pathogenesis has remained somewhat
elusive, at least partially the consequence of study
heterogeneity. Studies have utilized different types
of aPL (monoclonal vs. patient-derived; protein
cofactor-dependent vs. cofactor-independent) and
have focused on a variety of cellular targets (endo-
thelial cells, platelets, monocytes, neutrophils,
trophoblast cells, etc.).

Many pathogenic antibodies in APS do not
target phospholipids themselves, but rather phos-
pholipid-binding protein cofactors. The best charac-
terized of these cofactors is beta-2 glycoprotein I
(b2GPI), a lipid-binding protein present at high
levels in plasma [22,23], albeit with largely
unknown endogenous function. The mechanistic
schema is that anti-b2GPI antibodies potentiate
thrombosis by engaging b2GPI protein that has been
recruited to cell surfaces – and thereby promote cell
activation [24–26]. The mechanisms by which anti-
b2GPI antibodies activate cells have been recently
reviewed [27], with roles especially suggested for the
cell surface proteins annexin A2, apolipoprotein E
receptor 2 (ApoER2), Toll-like receptor 2 (TLR2), and
TLR4 [27].
r Health, Inc. All rights reserved.

ry criteria are met

f arterial, venous, or small-vessel thrombosis

eath of a morphologically normal fetus at �10 weeks of gestation

ivery of a morphologically normal fetus at <34 weeks gestation

psia or eclampsia defined according to standard definition

tures of placental insufficiency

onsecutive miscarriages at <10 weeks gestation, with maternal and
atomic, hormonal, or chromosomal abnormalities) excluded

2 occasions �12-week apart:

bodies of IgG or IgM isoforms

tein-I antibodies of IgG or IgM isoforms
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Table 2. Summary of efficacy and mechanisms by which repurposed therapeutics could potentially benefit antiphospholipid

syndrome patients

Hydroxychloroquine Statins Rivaroxaban

Summary of efficacy

Thrombotic risk Mouse models Protects [9,10&&] Protects [11]

APS patients No prospective studies in APS,
but protects in postoperative
setting [12]

No studies in APS, but protects
in the general population [13]

Efficacy may be similar to
warfarin in carefully-selected
patients (though further study is
needed) [14&&]

Obstetric events Mouse models Prevents fetal death and
metabolic changes [15&]

Prevents fetal death [16]

APS patients May prevent pregnancy loss
[7,17]

May prevent fetal morbidity and
mortality [18&&]

Potential anti-inflammatory mechanisms

Complement Inhibits activation and
deposition [15&]

Decreases activation [19&]

Type I IFN signature Decreases [20&&] Decreases [20&&]

NET release Possibly inhibits [21]

ASP, antiphospholipid syndrome; IFN, interferon; NET, neutrophil extracellular trap.

Systemic lupus erythematosus and Sjogren syndrome
ApoER2 (also known as LDL receptor-related
protein 8) is one receptor for b2GPI (and con-
sequently b2GPI-dependent aPL) on monocytes,
endothelial cells, and platelets. Indeed, in a 2011
study, Ramesh et al. [28] demonstrated ApoER2�/�

mice are relatively resistant to thrombosis when
confronted with aPL. More recently, it has been
revealed that ApoER2 may play an important role
in obstetric APS [29]. Specifically, Ulrich et al. [29]
demonstrated enhanced placental trophoblast cell
proliferation and migration in vitro when aPL engage
b2GPI/ApoER2 complexes on the trophoblast cell
surface. Extending these studies to an in-vivo model
of aPL-mediated pregnancy loss, they demonstrated
protection in ApoER2�/� mice [29]. In another
recent study, Mineo et al. [30

&

] developed a mAb
against b2GPI that prevents pathogenic aPL binding,
thereby protecting against aPL-mediated cell acti-
vation. The antibody attenuated the association of
b2GPI with ApoER2, thereby normalizing endo-
thelial and trophoblast cell function in vitro, as well
as preventing thrombosis and fetal loss in vivo [30

&

].
Although further study is clearly needed, the inter-
section of aPL, b2GPI, and ApoER2 warrants inves-
tigation as a potential therapeutic target in patients.

As neither b2GPI itself, nor some b2GPI ‘recep-
tors’ such as annexin A2, have a cytoplasmic domain
to mediate signaling, there has been interest in
additional partner proteins that may convey acti-
vating signals to the cytoplasm. On this front,
particular attention has been given to the cell-
surface TLRs, TLR2 and TLR4. In mouse models,
TLR4 deletion protects against venous and arterial
thrombosis in some [31–33], but not all [34

&

], studies
 Copyright © 2017 Wolters Kluwer 
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(it is worth pointing out that the latter study utilized
cofactor-independent aPL). Studies of obstetric APS
have also yielded mixed results with an older study
demonstrating no role for TLR4 in an in-vivo model
of pregnancy loss [35]. In contrast, Azuma et al. [36]
recently suggested that, at least in-vitro, TLR2 and
TLR4 facilitate inflammatory cytokine production
by trophoblast cells in response to anti-b2GPI anti-
bodies.

Signaling pathways downstream of the afore-
mentioned receptors, at least as they relate to APS
pathogenesis, remain incompletely understood.
Terrisse et al. [37

&

] recently investigated downstream
signaling pathways by which aPL (especially IgG
isolated from APS patients) activate platelets. The
authors demonstrated that aPL potentiate ex-vivo
platelet activation through surface glycoprotein Iba

(the platelet receptor for von Willebrand factor)
and TLR2, by a mechanism involving class IA phos-
phoinositide 3-kinase (PI3K) a and b isoforms [37

&

].
One downstream consequence of PI3K signaling is
activation of the serine/threonine kinase Akt, a
pathway that supports cell survival, proliferation,
and migration [37

&

]. Indeed, PI3K inhibitors, which
are being explored as potential drug targets in other
contexts [38], are effective at preventing aPL-medi-
ated platelet activation [37

&

]. Interestingly, another
study has suggested that Akt activation is a down-
stream consequence of trophoblast cell activation
by aPL [29].

Beyond the engagement of aPL with cell surfa-
ces, a recent report by Wu et al. [39

&

] suggests an
intriguing new mechanism by which aPL-activated
endothelial cells may propagate this activation in
Health, Inc. All rights reserved.
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paracrine fashion to other endothelial cells. Anti-
b2GPI antibodies trigger the release of ‘extracellular
vesicles’ from endothelial cells, which the authors
define as inclusive of both microparticles and exo-
somes [39

&

]. These vesicles then activate endothelial
cells through a mechanism that is not dependent
upon packaged cytokines such as IL-1, but rather
single-stranded RNA that signals through TLR7 in
the recipient cell [39

&

]. They also speculate that
these vesicles may be a mechanism for delivery of
specific and functionally-relevant micro-RNA,
though this hypothesis requires further study.
THE VESSEL WALL: ENDOTHELIAL
PROGENITORS AND INTERFERONS

Our group recently looked ‘upstream’ of endothelial
cells, asking whether a deficiency in reparative,
circulating endothelial progenitors might contrib-
ute to defective maintenance and health of the
endothelium over time. Indeed, a deficiency in
the number and function of such progenitors is a
well recognized aspect of both lupus and rheuma-
toid arthritis (RA) [40]. We found that primary APS
patients have a reduction in functional endothelial
progenitors, which was interestingly not dependent
upon patient IgG; rather, we discovered a type I
interferon signature in the APS patients, abrogation
of which could restore normal progenitor function
[41

&

]. These findings were replicated by van den
Hoogen et al. [20

&&

], who found that approximately
50% of primary APS patients have a type I interferon
signature, which was less likely to be present in
patients taking either hydroxychloroquine or
statins. Interestingly, they also found that the inter-
feron signature correlated with expansion of ‘inter-
mediate’ and ‘nonclassical’ monocytes (which have
been previously linked to cardiovascular disease in
lupus and RA) [20

&&

]. How these monocytes intersect
with endothelial progenitors [42], and whether
there is a role for anti-interferon therapy in APS
[43], are questions that deserve further consider-
ation.

One potential consequence of endothelial cell
(and progenitor) dysfunction is atherosclerosis, an
accelerated version of which is a well known com-
plication of lupus [44], and which has also been
reported in APS [45,46]. The recent work of Bena-
giano et al. has examined the role of TH1 specific
inflammatory responses to b2GPI in established
atherosclerotic lesions of primary APS patients.
Their work demonstrated that plaque-derived,
b2GPI-specific CD4þ T-lymphocytes facilitate per-
forin-mediated and Fas ligand-mediated cytotox-
icity, pointing to a role for these autoreactive T
cells in plaque destabilization (and potentially the
 Copyright © 2017 Wolters Kluwe
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arterial thrombotic events that are known to occur
at higher frequency in APS) [47

&&

]. They also dem-
onstrated that b2GPI can induce proliferation of
(and IFN-g expression by) plaque-derived T-cell
clones [47

&&

]. Furthermore, these T cells amplify
monocyte responses, such as the production of
tissue factor (TF) and matrix metalloproteinases,
which can be inhibited with an anti-IFN-g antibody
[47

&&

].
MYELOID-LINEAGE CELLS: NEUTROPHIL
EXTRACELLULAR TRAPS AND MONOCYTE
NOX2

The role of neutrophils in APS pathogenesis has only
recently been investigated. This interest was precipi-
tated by emerging descriptions of neutrophils as
mediators of both pathologic clotting and auto-
immune diseases [48,49]. In particular, neutrophil
extracellular traps (NETs) (extracellular chromatin-
based structures released by activated neutrophils)
have been described as triggers of autoimmunity
and tissue damage, as well as important instigators
of thrombosis [50].

With this background in mind [51], our group
recently identified increased levels of cell-free DNA
and NETs in the circulation of primary APS patients,
as compared with healthy controls [52

&&

]. When APS
neutrophils were cultured in vitro, they demon-
strated an enhanced propensity to spontaneously
release NETs [52

&&

]. Mechanistically, anti-b2GPI IgG
appears to be at least one factor in patient blood that
supports NET release, with the mechanism depend-
ent upon both TLR4 and formation of reactive oxy-
gen species [52

&&

]. Furthermore, the prothrombotic
potential of aPL-mediated NETs was demonstrated
in a thrombin generation assay, with this potential
abrogated by treatment with deoxyribonuclease
(DNase) [52

&&

]. In parallel to our work, van den
Hoogen et al. [53] reported increased levels of
circulating ‘low-density granulocytes’ or LDGs in
patients with primary APS. This proinflammatory
subset of neutrophils has been well characterized
in systemic lupus erythematosus and other auto-
immune disorders, in which they are reported to
release NETs in exaggerated fashion [54]. Whether
LDGs are important sources of NETs in APS awaits
further study [55].

The in-vivo relevance of NETs was recently con-
firmed by our group in a mouse model of APS. In this
model, IgG from triple-positive APS patients poten-
tiated venous thrombosis in mice that had been
subjected to flow restriction in the inferior vena
cava by a standard surgical stenosis [56

&

]. As com-
pared with control mice, mice treated with APS IgG
were twice as likely to develop macroscopic thrombi
r Health, Inc. All rights reserved.
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in response to flow restriction. Mechanistically, APS
thrombi were enriched for NETs, whereas patient
IgG could be detected on the surface of circulating
neutrophils [56

&

]. Furthermore, APS IgG-mediated
thrombosis could be reversed by either neutrophil
depletion or administration of systemic DNase [56

&

].
Around the same time, Manukyan et al. [34

&

] pub-
lished an elegant study demonstrating that cofactor-
independent aPL could similarly potentiate throm-
bosis in an inferior vena cava flow-restriction model.
Their interesting work found a major role for
leukocyte activation in thrombus formation, which
could be abrogated by deletion of NOX2 (the cata-
lytic subunit of NADPH oxidase) from bone marrow-
derived cells. Although the authors’ primary interest
was in monocyte NOX2 and its role in TF expres-
sion, there is also a well accepted role for neutrophil
NOX2 in NET formation [57]. Further studies may
assess the role of these cofactor-independent anti-
phospholipid antibodies in inducing NET release
in vitro and in vivo.
COMPLEMENT: AT THE INTERSECTION OF
COAGULATION AND INFLAMMATION IN
ANTIPHOSPHOLIPID SYNDROME

Animal models of APS have supported a role for
complement activation in both thrombotic events
and pregnancy loss [58,59]. Studies in APS patients
have demonstrated smoldering activity of the comp-
lement cascade [60–62], whereas a recent case report
revealed deposition of b2GPI protein, IgG, and
complement components C1q, C4, C3, and C5b-9
at the endothelial surface of an occluded artery in an
APS patient [63]. Furthermore, this patient, who had
suffered recurrent arterial occlusions, was success-
fully revascularized while under treatment with
eculizumab, a terminal complement inhibitor [63].

In lupus, antibodies to C1q (a complex that
initiates the complement cascade in response to
immune complexes) amplify complement acti-
vation and strongly correlate with certain clinical
manifestations such as proliferative nephritis [64].
Oku et al. [65] recently investigated these antibodies
in primary APS patients, demonstrating that 36% of
patients had detectable anti-C1q (compared with
55% of lupus patients). Interestingly, titers of anti-
C1q were significantly higher in patients with
refractory APS [65].

Rivaroxaban, a direct factor Xa inhibitor, has
recently been considered as an alternative agent to
vitamin K antagonists in APS. The first randomized,
prospective study investigating use of rivaroxaban
in APS (RAPS trial) was recently published. In
patients with a history of venous thromboembolism
(who had already demonstrated stable disease on
 Copyright © 2017 Wolters Kluwer 
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warfarin), both warfarin and rivaroxaban prevented
new thrombotic events for 210 days in every study
patient [14

&&

]. Bleeding events and overall adverse
events were also similar between the groups [14

&&

].
Although a full recounting of this important trial is
beyond the scope of this brief review, we would refer
you to a detailed comment on the topic [66]. Related
to our discussion of the complement pathway, a
post-hoc analysis of the RAPS trial revealed that,
prior to randomization, APS patients had signifi-
cantly higher markers of complement activation
as compared with normal controls [19

&

]. Although
patients in the warfarin group showed stable
elevation of these markers over time, patients
randomized to rivaroxaban demonstrated decreased
C3a, C5a, and soluble C5b-9 (all markers of classical
pathway activation) [19

&

]. In contrast, the alternative
pathway marker, Bb, was unchanged with rivaroxa-
ban treatment [19

&

]. Whether direct oral anticoagu-
lants have additional anti-inflammatory properties is
a topic that certainly warrants further study.
REPURPOSING MEDICATIONS: STATINS
AND HYDROXYCHLOROQUINE AS
ADJUVANT THERAPIES IN
ANTIPHOSPHOLIPID SYNDROME?

HMG-CoA reductase inhibitors (or statins) have
long been recognized to have pleotropic anti-
inflammatory effects supportive of vascular health,
including reductions in inflammation, oxidative
stress, and coagulation [67]. Clinically, statins
appear to reduce the risk of venous thromboembo-
lism in the general population [13]. In mouse
models of APS, statins mitigate aPL-mediated
thrombotic events and fetal death [11,16]. Further-
more, when administered to APS patients, statins
decrease both prothrombotic and proinflammatory
biomarkers [68].

The standard of care for managing pregnancy
complications in APS is the administration of low-
dose aspirin and low-molecular-weight heparin (the
latter at either prophylactic or therapeutic doses,
depending on the patient’s thrombosis history)
[69,70]. However, as detailed in recent review
articles [69,70], pregnancy complications in APS
are often not based in frank placental thrombosis,
but rather spiral artery vasculopathy, as well as acute
and chronic inflammation – with increased infiltra-
tion of inflammatory cells and deposition of comp-
lement in the placentae of women with APS [71–73].
Lefkou et al. [18

&&

] recently investigated the use of
pravastatin in refractory obstetric APS. In their
clinical trial, 21 patients with refractory obstetric
APS (emergence of preeclampsia and/or intrauterine
growth restriction [IUGR] despite treatment with
Health, Inc. All rights reserved.
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low-dose aspirin and low-molecular-weight hepa-
rin) were randomized either to continue standard
therapy or to receive pravastatin 20 mg/day at the
onset of preeclampsia/IUGR [18

&&

]. There was a
remarkable therapeutic benefit, with all the patients
receiving pravastatin delivering healthy infants at
34–38 weeks [18

&&

]. In contrast, the 10 patients who
remained on standard therapy had three stillbirths
at 25–26 weeks and seven preterm Cesarean sections
(resulting in two fetal deaths) [18

&&

].
Hydroxychloroquine (which is nowadays pre-

scribed to essentially all patients with lupus) was
utilized in the 1970s to reduce the risk of venous-
thromboembolism in postoperative patients [12]. In
the 1990s, hydroxychloroquine was demonstrated
to protect against aPL-mediated thrombosis in mice
 Copyright © 2017 Wolters Kluwe
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[9]. Furthermore, there have been hints of a
reduction in thrombosis risk in lupus patients taking
hydroxychloroquine, as compared with those who
are not [74,75]. Mechanistically, a recent study dem-
onstrated that hydroxychloroquine inhibits the
translocation of monocyte NOX2 to the endosome
in response to stimulants such as TNFa, IL-1b, and
aPL [10

&&

]. This was accompanied by mitigation of
aPL-induced, NOX2-mediated thrombus formation
in vivo [10

&&

]. As the related drug chloroquine has
been shown to antagonize NET release [21], further
studies should continue to explore the intersection
of hydroxychloroquine, activated monocytes/neu-
trophils, and APS.

Given its excellent safety profile in pregnancy
[76], and its nearly standard-of-care application in
r Health, Inc. All rights reserved.
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lupus pregnancies, hydroxychloroquine has been
increasingly considered as adjuvant therapy in APS
pregnancies. Indeed, recent retrospective studies
have suggested a beneficial effect of hydroxychlor-
oquine in APS pregnancies [7,17]. In a mouse model
of obstetric APS, Bertolaccini et al. [15

&

] recently
demonstrated that hydroxychloroquine prevents fet-
al death and placental metabolic changes. Going
further, they demonstrated that labeled aPL especi-
ally localize to the placenta and the developing fetal
brain, and that hydroxychloroquine mitigates comp-
lement deposition at both sites (which correlated
with lower levels of C3a and C5a in blood) [15

&

].
Intriguingly, C3a and C5a were also reduced in the
blood of APS patients after 6 months of hydroxy-
chloroquine treatment [15

&

].
CONCLUSION

Since its description in the 1980s, APS has been
managed primarily with anticoagulant medications.
These medications are not universally protective
against subsequent thrombotic events and preg-
nancy loss and have little proven track record in
treating ‘noncriteria’ manifestations of APS such as
cytopenias and cardiac valvular disease. Basic sci-
ence studies continue to refine the signaling path-
ways, activated cells, and noncellular effectors
critical for APS pathogenesis (Fig. 1). In addition
to a search for novel therapeutics, established medi-
cations such as statins and hydroxychloroquine are
receiving increasing interest as adjuvant therapies.
In the near future, we hope to see more well
designed clinical trials with both mechanistic and
clinical endpoints.
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 CURRENT
OPINION Progress in the pathogenesis and treatment of

cardiac manifestations of neonatal lupus

Peter Izmirly, Amit Saxena, and Jill P. Buyon

Purpose of review
To provide new insights into pathogenesis, prevention and management of cardiac manifestations of
neonatal lupus (cardiac neonatal lupus) and issues pertinent to all anti-SSA/Ro positive individuals of
childbearing age.

Recent findings
Antibody specificity with high risk for cardiac neonatal lupus remains elusive, but high titers of Ro60, Ro52
or Ro52p200 antibodies appear to be required. Varying antibody specificities to the p200 region of Ro52
can induce first-degree block in a rodent model. In consideration of the contribution of macrophages to
inflammation and fibrosis in cardiac neonatal lupus, hydroxychloroquine (HCQ) is being considered as
preventive therapy. Cord blood biomarkers support the association of fetal reactive inflammatory and
fibrotic components with the development and morbidity of cardiac neonatal lupus. Data from U.S. and
French registries do not provide evidence that the prompt use of fluorinated steroids in cases of isolated
block significantly alters fetal/neonatal morbidity or mortality.

Summary
The search for a high-risk cardiac neonatal lupus antibody profile remains, but high-titer antibodies to Ro60
and R052 are a consistent finding, and this may guide the need for fetal echocardiographic surveillance.
The uniform use of fluorinated steroids to prevent progression of cardiac neonatal lupus or reduce mortality
does not appear justified. HCQ, based on diminishing an inflammatory component of cardiac neonatal
lupus, is under consideration as a potential preventive approach.

Keywords
anti-SSA/Ro antibodies, congenital heart block, neonatal lupus

INTRODUCTION

Maternal autoimmunity is a significant environ-
mental factor with the potential to irreversibly influ-
ence fetal and neonatal health. Although the
relationship between systemic lupus erythematosus
(SLE) and Sjogren’s syndrome and congenital heart
block (CHB) and neonatal skin rashes was described
by 1960, the ‘culprit’ antibody reactivity to the SSA/
Ro-SSB/La ribonucleoprotein complex was ident-
ified 20 years later [1]. Neonatal lupus was a term
given to various fetal and neonatal manifestations
associated with exposure to maternal anti-SSA/Ro-
SSB/La antibodies [2]. With time came the remark-
able realization that the mother’s clinical disease
was not the common denominator but rather this
specific set of autoantibodies. In fact, bradycardia in
a mid-to-late second trimester fetus is often the first
clue to the presence of anti-SSA/Ro-SSB/La anti-
bodies in a completely asymptomatic mother. The
recent study from Stockholm County in Sweden
reported only one of 20 cardiac neonatal lupus cases

is born to a mother previously diagnosed with SLE
[3]. The spectrum of cardiac manifestations of neo-
natal lupus (cardiac neonatal lupus) includes heart
block (the most characteristic) and involvement
beyond the atrioventricular node, myocarditis,
dilated cardiomyopathies, valvular abnormalities
and endocardial fibroelastosis. In this review,
cardiac neonatal lupus will be used rather than
CHB. The disease is rare with few population
estimates. The recent Sweden study reported the
incidence of anti-SSA/Ro autoantibody-related
second and third-degree block to be 1 : 23,300 [3].
In mothers with the candidate autoantibodies, the
disease occurs in 2% of pregnancies [4] and recurs in
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KEY POINTS

� There is not one singular epitope of Ro52p200 that is
specific for the development of first-degree heart block
in a murine model.

� Targeting downstream transcription factors and
epigenetic modifications following Toll-like receptor
7/8 ligation in macrophages may be the mechanism of
action of HCQ and provide rationale for its role in
prevention of disease.

� On the basis of data from two large registries,
treatment of advanced block with fluorinated steroids
does not prevent further injury.

Systemic lupus erythematosus and Sjogren syndrome
18% [5]. The mortality approaches 18%, and most
children require lifetime pacing [6]. A major chal-
lenge in elucidating the mechanism of antibody
injury relates to the fact that the target antigen is
intracellular. Thus, accessibility to circulating
maternal antibodies can be explained by either a
cross-reactive cardiac myocyte surface antigen or
cellular processes such as apoptosis that deliver
the SSA/Ro or SSB/La antigens to the membrane
surface. Surveillance of mothers at risk for cardiac
neonatal lupus in an offspring relies on fetal
echocardiograms. However, the low penetrance of
disease, controversy over treatment of incomplete
block if identified at all and irreversibility of com-
plete block call into question the utility of such
measurements. This review will cover bench-to-bed-
side studies from the recently published literature
that provide insights into the pathogenesis and
management of cardiac neonatal lupus.
UPDATES ON ANTIBODY SPECIFICITIES
AND PATHOGENICITY

To date, two nonmutually exclusive hypotheses
have been advanced to explain the molecular mech-
anism(s) by which anti-SSA/Ro-SSB/La antibodies to
normally sequestered intracellular antigens initiate
injury in the fetal heart. The first posits that the
intracellular target antigens translocate to the sur-
face of cardiomyocytes undergoing apoptosis during
physiological remodeling and are bound by circu-
lating maternal autoantibodies. The formation of
pathogenic antibody-apoptotic cell immune com-
plexes promotes proinflammatory and profibrotic
responses [7–9]. The second hypothesis is based on
molecular mimicry whereby antibodies cross-react
with L-type calcium channels and cause dysregula-
tion of calcium homeostasis [10–12]. Although sev-
eral studies have attempted to identify specific
epitopes within the SSA/Ro and SSB/La antigens that
 Copyright © 2017 Wolters Kluwer 
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associate with cardiac neonatal lupus, most of these
studies report epitopes common to the anti-SSA/Ro-
SSB/La response regardless of fetal outcome. Impor-
tantly, different antibody subsets are identified
depending on the immunoassay employed. Indeed,
the sensitivity of peptide or recombinant protein
ELISAs for anti-Ro60 antibodies is low and may
result in false negatives [13,14].

Over the last decade, there has been a major
focus on the antibody response against the p200
epitope, spanning Ro52 amino acids (aa) 200–239,
as a candidate biomarker conferring an increased
maternal risk for the development of cardiac neo-
natal lupus in an offspring [15,16]. The high preva-
lence of the p200 response in women giving birth to
a child with cardiac neonatal lupus has been con-
firmed by several groups. However, there have been
inconsistencies regarding its utility in high-risk
assessment relative to the pregnancy exposure
[17]. Consensus has not been reached as to whether
this antibody response is also similarly observed in
anti-SSA/Ro-exposed healthy children when all ot-
her maternal antibody reactivities to components of
the SSA/Ro-SSB/La complex are equivalent. To over-
come a limitation of most previous studies that
prevalence and titer of maternal antibodies have
not been measured during the time of fetal
exposure, Reed et al. [18] evaluated umbilical cord
blood and maternal serum during affected and unaf-
fected pregnancies for reactivity to p200, full length
Ro52, Ro60 and SSB/La. The frequencies of p200,
Ro52, Ro60 and SSB/La autoantibodies were not
significantly different between cardiac neonatal
lupus and anti-SSA/Ro-exposed unaffected children.
However, neonatal anti-Ro52 and Ro60 titers were
highest in cardiac neonatal lupus neonates and their
unaffected siblings compared to unaffected neo-
nates without a cardiac neonatal lupus sibling.
Although both maternal anti-Ro52 and p200 auto-
antibodies were less than 50% specific for cardiac
neonatal lupus, anti-p200 was the least likely of the
SSA/Ro autoantibodies to be false positive in
mothers who have never had a cardiac neonatal
lupus-affected child. Titers of anti-Ro52 and p200
did not differ during a cardiac neonatal lupus or
unaffected pregnancy from the same mother. Thus,
the utility of anti-p200 antibodies as a biomarker
over standard commercial ELISAs (which report out
positivity to SSA/Ro not specifically Ro52 or Ro60)
to guide the level of fetal surveillance was not estab-
lished.

Tonello et al. [19] reported on an Italian cohort
of anti-SSA/Ro exposed pregnancies in 81 mothers
(cardiac neonatal lupus in 16). As in the Reed’s
article, testing was done during the pregnancies.
The prevalence of anti-p200 antibodies was
Health, Inc. All rights reserved.
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significantly higher in those mothers whose off-
spring developed cardiac neonatal lupus (advanced
block) compared to those whose children were
unaffected (P¼0.03). Likewise, combinations of
anti-p200 with anti-Ro52 and anti-Ro60 antibodies
were significantly more frequent in the women
with fetuses developing cardiac neonatal lupus
than in the controls. Women whose children had
cardiac neonatal lupus had significantly higher
mean anti-Ro52, anti-Ro60 and anti-p200 levels
than the women whose children were unaffected
(P¼0.003, P¼0.0001 and P¼0.04, respectively).
However, a shortcoming emphasized in a dialogue
reviewing this study was the fact that the investi-
gators included mothers with low titer reactivities
who would have been expected to be of lower risk
[20].

Clearly, there is a need to better predict women
at the greatest risk for the development of cardiac
neonatal lupus in an offspring. To advance the field
beyond what is already known, it would be import-
ant to enroll at the very least only women with high-
titer antibodies during the pregnancy under study.
However, it may be that even identifying the highest
risk autoantibody profile is not sufficient and efforts
to define fetal factors need greater emphasis.

Just as the clinical utility of identifying epitope
specificity of the anti-Ro52 response has continued
to be evaluated, likewise the pathogenicity of this
response continues to be studied. The question per-
sists: whether there is one single specific antibody
profile underlying most cases of autoimmune-
associated cardiac neonatal lupus, or whether there
may be several antibody specificities and cross-
targets involved. To this end, Hoxha et al. [21

&

] have
exploited a rodent model to define further the
reactivity profile of anti-p200 antibodies. In brief,
despite low-to-absent reactivity toward rat p200
and different binding profiles toward mutated rat
peptides indicating recognition of different epitopes
within Ro52p200, immunoglobulin (Ig)G purified
from two mothers of children with cardiac neonatal
lupus (advanced block) induced abnormalities in
rat cardiac conduction. However, the abnormalities
were restricted to prolongation of the PR interval
and not second- or third-degree block. These find-
ings support the hypothesis that several antibody
specificities and cross-targets may exist and contrib-
ute to cardiac neonatal lupus in anti-Ro52 antibody-
positive pregnancies. Thus, it is likely that there is
not one single cardiac neonatal lupus inducing anti-
body specificity, but rather several different specif-
icities that may act in an additive fashion to induce
substantial damage in the fetal heart and lead to
complete atrioventricular block. Unfortunately, as
in prior studies using animal models, the cardiac
 Copyright © 2017 Wolters Kluwe
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phenotype remains mild. One explanation may be
that levels of IgG crossing the placenta in rodents
are insufficient to lead to full-blown inflammation
and fibrosis of the murine fetal atrioventricular
node. This consideration notwithstanding, even
in humans it should be pointed out that placental
transport at the 18–24-week vulnerable period is far
less efficient than months later at term. Alterna-
tively, essential fetal susceptibility factors may be
absent in the mouse and rat strains studied thus far.
In support of this possibility, it has been reported
that fetal major histocompatibility complex modu-
lates the penetrance of first-degree block in a rat
model of cardiac neonatal lupus [22], and genetic
variants modulating fetal cardiac function and/or
inflammatory responses in the presence of maternal
antibodies may amplify disease susceptibility and
phenotype severity. At this time, a robust animal
model that fulfills Koch’s postulates and demon-
strates advanced block with appropriate histologic
correlates has not yet been developed.

Driven by the histologic features of cardiac
neonatal lupus as demonstrated in autopsies of fetal
hearts dying with the disease [23], Clancy et al. [24

&

]
have focused on an in-vitro model to recapitulate
the underpinnings of the inflammatory infiltrate
and subsequent fibrosis. On the basis of consistent
demonstration of fibrosis of the atrioventricular
node surrounded by macrophages and multi-
nucleated giant cells, this group addressed macro-
phage signaling stimulated by ssRNA associated
with the Ro60 protein and investigated the impact
of antagonizing innate cell drivers such as toll-like
receptor (TLR)7/8. Epigenetic modifications that
affect transcription factorsnuclear factorkappa-light-
chain enhancer of activated B cells (NF-kB) and
signal transducer and activator of transcription 1
were chosen to assess the phenotype of macro-
phages in which TLR7/8 was ligated following treat-
ment with either anti-Ro60/Ro60/hY3 RNA immune
complexes or transfection with hY3. On the basis of
microarray, tumor necrosis factor alpha (TNF-a) and
interleukin 6 were among the most highly upregu-
lated genes in both stimulated conditions. This
upregulation was inhibited by preincubation with
hydroxychloroquine (HCQ), a drug which inhibits
TLR ligation and is currently being studied to reduce
the recurrence rate of cardiac neonatal lupus. In
contrast, the resultant gene expression profile
observed following stimulation with TNF-a or inter-
feron alpha (IFN-a) (neither signal through TLR) was
not inhibited by HCQ. Ligation of TLR7/8 resulted
in increased histone methylation, a requirement for
binding of NF-kB at certain promoters that was
significantly decreased by HCQ. HCQ may act more
as a preventive measure in downregulating the
r Health, Inc. All rights reserved.
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initial production of IFN-a or TNF-a and may not
directly affect the resultant autacoid stimulation
reflected in TNF-a- and IFN-a-responsive genes.
The potential benefit of antimalarials in the preven-
tion of heart block in an anti-SSA/Ro antibody
exposed offspring [25,26] may include, in part, a
mechanism targeting TLR-dependent epigenetic
modification.

To provide clues to the pathogenesis of cardiac
neonatal lupus with translational implications for
management, several candidate biomarkers in cases
at risk for disease were evaluated [27

&

]. The bio-
markers were chosen based on their potential roles
in inflammation, fibrosis and cardiac dysfunction:
C-reactive protein (CRP), NT-pro-B-type natriuretic
peptide (NT-proBNP), troponin I, matrix metallo-
proteinase (MMP)-2, urokinase plasminogen activa-
tor (uPA), urokinase plasminogen activator receptor
(uPAR), plasminogen and vitamin D. On the basis of
evaluation of 139 samples from the umbilical cord
and 135 maternal samples, cord CRP, NT-proBNP,
MMP-2, uPA, uPAR and plasminogen levels were
higher in cardiac neonatal lupus-affected fetuses
than in unaffected cases, independent of maternal
rheumatic disease or medications taken during preg-
nancy. Maternal CRP and cord troponin I levels did
not differ between the groups. Cord and maternal
vitamin D levels were not significantly associated
with cardiac neonatal lupus, but average maternal
vitamin D level during pregnancy was positively
associated with longer time to postnatal pacemaker
placement. These data support the association of
fetal reactive inflammatory and fibrotic com-
ponents with development and morbidity of cardiac
neonatal lupus independent of maternal risk factors.
The authors suggest that following CRP and NT-
proBNP levels after birth can potentially monitor
severity and progression of cardiac neonatal lupus.
MMP-2 and the uPA/uPAR/plasminogen cascade
provide therapeutic targets to decrease fibrosis.
Although decreased vitamin D did not associate
with increased risk, given the positive influence
on postnatal outcomes, maternal levels should be
optimized.
APPROACH TO TREATMENT

Given the fetal bioavailability of fluorinated steroids
and the presumed inflammatory response contribu-
ting to cardiac injury, these drugs have been con-
sidered in both the treatment and prevention of
cardiac neonatal lupus. Although not uniformly
effective, these drugs have been associated with
reversal of first- and second-degree heart block
[6,28–31]. As third-degree heart block has never
been permanently reversed with any treatment,
 Copyright © 2017 Wolters Kluwer 
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the utility of instituting fluorinated steroids with
known side effects [30,32,33] has been questioned.
Published data are limited and discordant regarding
the efficacy of fluorinated steroids in reducing the
mortality of cardiac neonatal lupus [28,34,35],
which poses a therapeutic dilemma when isolated
third-degree block is identified.

Leveraging data from a large registry of cardiac
neonatal lupus cases, the efficacy of fluorinated
steroids with regard to progression, mortality and
need for pacemaker implantation was addressed
[36

&&

]. In this retrospective study restricted to anti-
SSA/Ro-exposed cases presenting with isolated
advanced heart block in utero who received either
fluorinated Steroids within 1 week of detection
(N¼71) or no treatment (N¼85), the following
outcomes were evaluated: development of endocar-
dial fibroelastosis, dilated cardiomyopathy and/or
hydrops fetalis; mortality; and pacemaker implan-
tation. In Cox proportional hazards regression
analyses, fluorinated steroids did not significantly
prevent the development of disease beyond the
atrioventricular node [adjusted hazard ratio¼0.90;
95% confidence interval (CI):0.43–1.85; P¼0.77],
reduce mortality (hazard ratio¼1.63; 95% CI:0.43–
6.14; P¼0.47) or forestall/prevent pacemaker
implantation (hazard ratio¼0.87; 95% CI: 0.57–
1.33; P¼0.53).

In aggregate, these data do not provide evidence
that prompt fluorinated steroid use significantly
alters fetal/neonatal morbidity or mortality. Vari-
ables that differed between treated and untreated
groups included year of birth, which did not associ-
ate with extranodal disease, and HCQ use, which
was so infrequent that it precluded meaningful
analysis. Multivariable analyses revealed no ident-
ifiable maternal or fetal risk factor for progression of
disease beyond the atrioventricular node. Consist-
ent with previous reports, extranodal disease was
significantly associated with mortality [6,28,37,38].

With regard to the efficacy of steroids to prevent
the development of cardiac neonatal lupus, the
Research Team for Surveillance of Autoantibody-
Exposed Fetuses and Treatment of Neonatal Lupus
Erythematosus, the Research Program of the Japan
Ministry of Health, Labor and Welfare, performed a
national survey on pregnancy of 635 mothers
positive for anti-SSA/Ro antibodies. Cardiac neo-
natal lupus (advanced block) was detected in 16.
In multivariate analysis, the use of corticosteroids
before conception [odds ratio (OR): 4.28, P¼0.04]
and high titer of anti-SSA/Ro antibodies (OR: 3.58,
P¼0.02) were independent and significant risk fac-
tors for the development of cardiac neonatal lupus
[39]. The use of corticosteroids (equivalent doses of
prednisolone, at � 10 mg/day) after conception
Health, Inc. All rights reserved.
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before 16 weeks of gestation was an independent
protective factor against the development of cardiac
neonatal lupus (OR: 0.16, P¼0.03). However, the
use of continuous corticosteroids both before and
after conception had no effect on the development
of cardiac neonatal lupus. The difficulty in inter-
preting these results is that different preparations
of steroids were used, making it challenging to
sort out the effect of fluorinated steroids in parti-
cular. Moreover, there was only a small number
of cases in which CHB developed (N¼16). Not
unexpectedly, high titer of anti-SSA/Ro antibodies
was an independent risk factor for cardiac neonatal
lupus.

Levesque et al. [40
&&

] reported the results of a
large retrospective French registry of 214 cases with
cardiac neonatal lupus (advanced block). The use of
fluorinated steroids was neither associated with sur-
vival nor with regression of second-degree CHB. The
authors also leveraged this registry to address factors
associated with mortality which in this cohort
approached 16%. In agreement with previous pub-
lications [6,28], hydrops (hazard ratio¼12.4; 95%
CI:4.7–32.7; P<0.001) and prematurity (hazard
ratio¼17.1; 95% CI:2.8–103.1; P¼0.002) were
associated with fetal/neonatal mortality. During a
median follow-up of 7 years (birth to 36 years), 148
of 187 children born alive (79.1%) had a pacemaker,
35 (18.8%) had dilated cardiomyopathy (DCM)
and 22 (11.8%) died. In multivariate analysis,
factors associated with child death were in utero
DCM (hazard ratio¼6.37; 95% CI: 1.25–32.44;
P¼0.0157), postnatal DCM (hazard ratio¼227.58;
95% CI: 24.33–2128.46; P<0.0001) and pacemaker
implantation (hazard ratio¼0.11; 95% CI: 0.02–
0.51; P¼0.0035).
CONCLUSION

The search for a unique antibody profile that will
predict the development of cardiac neonatal lupus
remains elusive, but high titers of Ro60, Ro52 or
Ro52p200 antibodies appear to be required. Varying
antibody specificities to the p200 region of Ro52 can
induce first-degree block in a rodent model. A robust
animal model of cardiac neonatal lupus has yet to be
developed. In consideration of the contribution of
macrophages to the inflammation and fibrosis in
cardiac neonatal lupus, HCQ is being considered as
preventive therapy. Cord blood biomarkers support
the association of fetal reactive inflammatory and
fibrotic components with the development and
morbidity of cardiac neonatal lupus. Data from
two large registries do not support the use of fluo-
rinated steroids in cases of isolated third-degree
block as a means of preventing progressive injury.
 Copyright © 2017 Wolters Kluwe
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 CURRENT
OPINION Pregnancy and reproductive aspects of systemic

lupus erythematosus

Laura Andreoli, Francesca Crisafulli, and Angela Tincani

Purpose of review
To discuss pregnancy and reproductive aspects in women with systemic lupus erythematosus (SLE) with
particular focus on preconception counselling, maternal and foetal outcomes, safety and beneficial effects
of drugs during pregnancy as well as contraception methods, assisted reproduction techniques and
strategies for thromboembolism prophylaxis in patients with positive antiphospholipid antibodies.

Recent findings
Evidence-based recommendations for the management of family planning and women’s health issues in SLE
and/or APS have been developed by a multidisciplinary panel of experts. The primary aim of these
recommendations is to provide a practical tool for facilitating physician–patient communication on
reproductive issues. Points-to-consider and guidelines were also released on the use of antirheumatic drugs
during pregnancy and lactation.

Summary
Women with SLE should be timely and periodically counselled on family planning. Preconception
counselling and risk stratification (based on disease activity and serological profile) are key points for
having successful pregnancies thanks to individualized treatments and close monitoring for maternal and
foetal complications. Contraception and assisted reproduction techniques are feasible in women with SLE,
provided that potential risks are minimized by individualized management and appropriate prophylaxis.

Keywords
assisted reproduction techniques, contraception, counselling, pregnancy, systemic lupus erythematosus

INTRODUCTION

Systemic lupus erythematosus (SLE) is a multisyste-
mic autoimmune disease affecting women predom-
inantly in their childbearing age; therefore, it is
essential to consider disease impact on pregnancy
and reproductive aspects. Whereas in the past auto-
immune diseases were considered to be an absolute
contraindication to motherhood, today we know
that pregnancy outcome in women affected by SLE
has greatly improved thanks to a correct timing of
pregnancy (discussed with the patients in a precon-
ception counselling), a close monitoring throughout
pregnancy and also in the postpartum period, a mul-
tidisciplinary management and an increased knowl-
edge about the medications that can be used (in
prevention or in case of disease’s relapse) during
pregnancy and breastfeeding [1

&

,2
&&

,3
&&

,4].
In addition topregnancy, contraceptivemeasures

[5] and assisted reproduction technologies (ARTs) [6
&

]
are crucial topics to be addressed by the rheumatol-
ogist in the counselling about reproductive aspects.

This review will focus on preconception coun-
selling and risk stratification in patients with SLE,

maternal and foetal outcome [7
&&

,8], strategies for
thromboembolism prophylaxis with particular
reference to antiphospholipid antibodies (aPL),
the use of antirheumatic drugs during pregnancy
and breastfeeding, contraception, and assessment
of fertility with special attention on feasibility
of ARTs.

PREGNANCY

Ideally, rheumatologists should ask about family
planning to each patient of childbearing age since
the very first visit. The purpose is to give infor-
mation about the correct timing of pregnancy in
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KEY POINTS

� Counselling about reproductive issues is crucial in
women with SLE.

� Preconception counselling is essential for risk
stratification and patient-tailored management in order
to prevent adverse pregnancy outcomes.

� Most antirheumatic drugs are compatible with
pregnancy and breastfeeding. Among these, the
beneficial role of hydroxychloroquine during pregnancy
should be emphasized.

� The intrauterine device can be offered to all patients
(unless gynaecological contraindications). The use of
hormonal contraceptive methods is feasible but must be
weighed against the risk of thrombosis (in particular
aPL profile).

� Assisted reproduction techniques are effective and
generally safe in women with SLE with quiescent
disease, provided that adequate antithrombotic
prophylaxis is given and complications of ovarian
stimulation are prevented (e.g., ‘friendly ovarian
stimulation’).

Table 1. Risk factors to consider in women with SLE

during preconception counselling

SLE-related risk factors General risk factors

H Active SLE in the previous
6–12 months or at
conception

H Maternal age

H Active/history of Lupus
Nephritis

H Arterial hypertension

H End-stage organ damage H Diabetes mellitus

H Vascular thrombosis H Overweight or obesity

H Previous adverse
pregnancy outcome

H Thyroid disease

H Serological activity (C3,
C4 levels, and antidsDNA
titre)

H Smoke and alcohol use

H aPL profile (LA, aCL IgG/
IgM, ab2GPI IgG/IgM)

H Immunization status (eg, rubella)

H Anti-Ro/SSA, anti-La/SSB
antibodies

aB2GPI, anti b2GPI antibodies; aCL, anticardiolipin antibodies; AntidsDNA,
antidouble stranded DNA; LA, lupus anticoagulant.
Adapted from Andreoli et al. [2

&&

].

Systemic lupus erythematosus and Sjogren syndrome
relation to disease activity and about the compati-
bility of drugs needed for disease control.
Preconception counselling and pregnancy
monitoring

Preconception counselling is crucial in women with
SLE. The stratification of risk of adverse maternal
and foetal outcome should be carried out by con-
sidering both disease-related and general maternal
risk factors (Table 1) [2

&&

]. Once individual risks are
established, the second step of the counselling is to
set up preventive strategies and a patient-tailored
monitoring plan. In addition to the routine ultra-
sonography screening (during the first trimester at
11–14 weeks of gestation and during the second
trimester with Doppler at 20–24 weeks of gestation),
patients with SLE should undergo supplementary
surveillance in the third trimester, at monthly inter-
vals, based on biometric and Doppler findings in
order to diagnose an early or late Intra Uterine
Growth Restriction and tailor the time of delivery
[2

&&

,9–12]. Special monitoring is dedicated to
women with Ro/SSA and/or La/SSB antibodies pos-
itivity; these patients should be informed about the
risk of neonatal lupus and foetal dysrhythmia or
myocarditis [13

&

,14
&

,15,16]. It is important to con-
sider that the congenital heart block (CHB), the
most feared complication associated with the pres-
ence of these antibodies, may occur from 0.7% to
2% in women with no history of foetal CHB, while
 Copyright © 2017 Wolters Kluwer 
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the recurrence rate in a woman who already gave
birth to a child affected by CHB is about 16% [17

&&

].
In the last case, it is recommended to perform foetal
echocardiograms every week starting from week 16
of gestation. For women with positive anti-Ro/SSA
and/or anti-La/SSB antibodies and no previous child
affected by CHB, the current practice is to suggest a
monitoring between 16 and 26 weeks of gestation,
weekly or biweekly if possible. Despite its unproven
benefit and cost-effectiveness, this intensive surveil-
lance is safe and usually the patients are keen to
accept it [17

&&

,18,19]. Patients with history of renal
involvement should be encouraged to frequently
monitor blood pressure and should perform 24-h
urine protein analysis regularly [1

&

]. The postpartum
period can be critical for SLE flares; therefore,
patients should be closely monitored and coun-
selled about the possibility to breastfeed during
the intake of antirheumatic drugs (Table 2).

It is therefore clear how important a multidisci-
plinary management is: rheumatologists, obstetri-
cians, neonatologists and other specialized doctors
should work together to ensure the best possible
outcome for both the mother and the child.
Maternal and foetal outcome

The improvement in disease management and preg-
nancy monitoring have resulted in a significant
decrease in pregnancy loss in SLE over the last
40 years (from an average of 43% in 1960–1965
Health, Inc. All rights reserved.
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Table 2. Compatibility of drugs with pregnancy and breastfeeding

Drug Pregnancy Breastfeeding

NSAIDs YES
During the first and the second trimesters

YES

Selective COX II inhibitors AVOID
(insufficient evidence)

Only Celecoxib

Prednisone YES
(at the lowest effective dose)

YES

Hydroxychloroquine YES YES

Azathioprine YES
(at doses up to 2 mg/kg/day)

YES

Methotrexate AVOID
(stop at least 3 months before pregnancy)

AVOID

Cyclophosphamide AVOID
(stop before conception; use justified only to treat life-threatening conditions during
second and third trimesters)

AVOID
(limited data)

Ciclosporin YES
(at the lowest effective dose)

YES

Tacrolimus YES
(at the lowest effective dose using trough levels)

YES

Mycophenolate mofetil AVOID
(stop 6 weeks before pregnancy)

AVOID
(no data)

Immunoglobulins YES YES

Belimumab LIMITED EVIDENCE, consider alternative medications AVOIDa

(no data)

Rituximab Can be used early in gestation in exceptional cases; in later stages of pregnancy
there is risk of B cell depletion and other cytopenias in the neonate

AVOIDa

(no data)

aTheoretical possible use during lactation because monoclonal antibodies are large molecules and unlikely to be secreted in breast milk; if present in milk,
monoclonal antibodies will be degraded in the neonatal gastrointestinal tract.
Adapted from Skorpen et al. [3

&&

]
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to 17% in 2000–2003) and a trend toward a
decrease in preterm births in SLE pregnancies
[20]. However, in a recent population study the risk
of stillbirths was found to be higher in patients
with SLE compared to women from the general
population [21].

In a meta-analysis including studies published
between 2001 and 2016, maternal and foetal out-
comes in pregnant women with SLE were compared
to those of pregnant women without SLE [7

&&

]. In
particular, a significant increase in caesarean section
(RR: 1.85), preeclampsia (PE) (RR: 1.91), hyperten-
sion (RR: 1.99), spontaneous abortion (RR: 1.51),
thromboembolic disease (RR: 11.29), and postpar-
tum infection (RR: 4.35) were shown in pregnant
women with SLE. Live births were significantly more
frequent in women without SLE (RR: 1.38) while
premature births were more common in women
with SLE (RR: 3.05). In addition, ‘small for gesta-
tional age’ (SGA), birth weight less than 2500 g,
necessity of neonatal intensive care unit, presence
of congenital defects, and one minute APGAR score
less than 7 were significantly higher among new-
borns of mothers with SLE [7

&&

].
 Copyright © 2017 Wolters Kluwe
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This meta-analysis work is linked to several
limitations, as reported by the authors. In fact,
medications and treatment strategies used during
pregnancy might not have been the same in all the
hospitals; in addition, different SLE-clinical pheno-
types have been included together in the analysis. A
recent study focusing on early-onset PE (defined as
PE registered at <34 weeks) showed a higher risk of
this event in women with SLE than in the general
obstetric population; this increase might be inde-
pendent of the traditional risk factors like pregesta-
tional hypertension, antiphospholipid syndrome
(APS), body mass index, or smoking [22

&

].
An important aspect of pregnancy in patients

with SLE is the risk of disease flares. Disease activity
at conception and in the previous months is a
predictor of both adverse pregnancy outcomes
(APOs) and adverse maternal outcome (SLE flare):
active disease during 6 months before conception is
associated with an increase in the rate of pregnancy
loss and active organ involvement in the same
period predicts the same involvement during preg-
nancy [23,24,25

&

,26]. A prospective multicentre
study including seventy-one pregnancies in women
r Health, Inc. All rights reserved.
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with lupus nephritis (LN) showed that, among the
characteristics at baseline, high SLE disease activity
index score, proteinuria, history of renal flares, arte-
rial hypertension and active LN increased the prob-
ability of preterm delivery [27

&&

]. Moreover, the
worst maternal outcomes have been observed in
this group of patients [28,29]. Thus, patients with
history of LN should deserve a particular manage-
ment and follow up during pregnancy [1

&

,30].
In a prospective, multicentre cohort study, base-

line predictors of APOs (foetal or neonatal death;
birth before 36 week because of placental insuffi-
ciency, hypertension or PE; SGA) included presence
of lupus anticoagulant, antihypertensive use, Phys-
ician’s Global Assessment score greater than 1, and
thrombocytopenia [31

&&

,32]. Maternal flares, higher
disease activity and smaller increase of C3 level later
in pregnancy were also predictors of APOs [31

&&

].
Serological markers such as reduction of serum
C3/C4 levels or increase of dsDNA titres are useful
for the differentiation between disease exacerbation
and PE [33,34].
Drug compatibility with pregnancy and
adjunct treatment

One of the aims of the preconception counselling is
to adjust treatment by switching to drugs compat-
ible with pregnancy and adding drugs which are
beneficial for pregnancy outcome [1

&

]. Given that
pregnancy should be planned in women with a
stable remission of SLE, it is important to be able
to maintain remission or to treat reactivation of
disease during pregnancy, weighing the risk of
potential side effects of drugs on the foetus with
the negative impact of disease reactivation on the
patient and her foetus. Recently, a European League
Against Rheumatism task force has defined the
points to consider for the use of antirheumatic drugs
before pregnancy, and during pregnancy and lacta-
tion [3

&&

]. Compatibility with pregnancy and lacta-
tion is possible for antimalarials, azathioprine,
ciclosporin, tacrolimus, intravenous immunoglobu-
lin, and glucocorticoids (Table 2) [3

&&

,35
&&

,36
&&

].
Among these drugs, particular mention should be
given to hydroxychloroquine (HCQ). A single
randomized placebo-controlled and a few non-
randomized studies highlighted that taking HCQ
before and during pregnancy has a beneficial role
in controlling SLE disease activity and preventing
flares, thus it is absolutely indicated to continue it if
already on treatment or to start it when pregnancy is
planned [37–40]. Furthermore, HCQ may reduce
the odds of CHB occurrence in foetus exposed to
maternal Ro/SSA antibodies [13

&

,41,42]. In a recent
prospective multicentre study, the probability of
 Copyright © 2017 Wolters Kluwer 
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having a small for gestational age baby was reduced
by 85% in patients with LN who received HCQ
therapy [27

&&

]. A beneficial role of HCQ has also
been suggested for APS pregnancy [43,44,45

&

] but
there are still few data to recommend its routine use
in these patients.

Methotrexate, mycophenolate mofetil, and cyclo-
phosphamide require discontinuation before con-
ception due to proven teratogenicity (Table 2).
Insufficient documentation implies the discontinu-
ation of rituximab, belimumab, and other biologic
drugs before a planned pregnancy [3

&&

,46].
In pregnant patients at high risk of PE without

autoimmune disease, the introduction of low-dose
aspirin (LDA) before the 16 weeks of gestation has
resulted in a reduction of the risk of PE, foetal
growth restriction, preterm birth and perinatal
death [47,48]. Accordingly, pregnant women with
SLE at risk of PE, in particular those with LN and aPL
positivity or APS, should start LDA preconception-
ally or no later than 16 week of pregnancy [2

&&

]. In
patients with APS the association of LDA and low
molecular weight heparin (LMWH) is recommended
[49,50]. Among patients with the positivity of aPL
but without a formal diagnosis of APS, this associ-
ation is recommended in selected cases such as older
maternal age, high-risk aPL profile (lupus anticoa-
gulant, multiple aPL, moderate to high titre of aPL)
and during assisted reproduction techniques. Con-
versely, patients with a low-risk aPL profile could be
candidate to a less-aggressive approach [1

&

,2
&&

,51]
(Table 3).

As in the general obstetric population, a supple-
mentation with folic acid, calcium, and vitamin D is
recommended [2

&&

].
CONTRACEPTION

A major concern is to avoid pregnancy during dis-
ease flares or during the intake of potentially tera-
togenic drugs. Nevertheless, the use of hormonal
contraceptive methods may favour an increased risk
of disease reactivation and thrombotic events. [2

&&

]
For these reasons, advice about contraception is
crucial for these women; however, the patients have
been reporting gaps in the provision of such coun-
selling [52,53].

Currently available contraceptives include bar-
rier methods, oral hormonal contraceptives, and
intrauterine devices (IUDs). Oral hormonal contra-
ceptives have been discourage in past. Nevertheless,
a recent review and two randomized controlled
trials have demonstrated that combined oestro-
gen-progestin and progestin-only pills are safe for
inactive and stable disease, in the absence of aPL
antibodies [5,54,55]. Major concerns are about
Health, Inc. All rights reserved.
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Table 3. Adjunct therapy during pregnancy in relation to thrombotic risk factors

Characteristics of the patient Medication

All SLE patients LDA

History of pregnancy failure despite treatment with LDA LDA þ LMWH at prophylactic dosea

High aPL risk profile

aPL and additional thrombotic risk factors

APS with history of early recurrent miscarriages, fetal death, PE

History of pregnancy failure despite treatment with prophylactic dose of heparin LDA þ LMWH at full anticoagulant dose

High aPL risk profile and additional thrombotic risk factors

History of venous or arterial thrombosis

LDA low-dose aspirin; SLE, systemic lupus erythematosus.
aIn patients with positivity of aPL, LMWH should be given also during puerperium (up to 6 weeks after delivery).
Adapted from Andreoli et al. [2

&&

].
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women with aPL positivity or definite APS, in
whom oestrogens containing preparations are con-
traindicated for the increased risk of thromboemb-
olism; in these patients progestin-only preparations
could be considered, although this risk is not absent
[1

&

]. IUDs can be offered to all patients unless
gynaecological contraindications [55]. Copper
IUD has no systemic side effects but often increases
dysmenorrhoea and menstrual bleeding, while lev-
onorgestrel IUD has the advantage of reducing
dysmenorrhoea and menstrual bleeding with a
not significantly increased risk of thrombosis
[56]. Barrier or natural methods are the least effec-
tive ones [56].

In conclusion, decisions regarding any contra-
ceptive method in patients with SLE or APS must
take into account not only the prevention of unin-
tended pregnancy but also the efficacy, the ease of
use and the risks of the method.
FERTILITY AND ASSISTED
REPRODUCTION TECHNIQUES

SLE patients have fewer children than other women.
Recently, a longitudinal observational study high-
lighted that, among patients with SLE interested in
having children, 64% had fewer children than
originally planned [57]. This is mainly due to the
higher rate of foetal losses and it has not been
associated with an increased rate of primary infer-
tility, as assessed by the determination of hormonal
levels or by the antral follicle count in ultrasound
[58–61]. In addition to this, some alkylating agents
such as cyclophosphamide can lead to premature
ovarian failure, which is age and dosage dependent
[62,63]. Another issue to be consider is that women
with SLE often are allowed to plan a pregnancy later
than women in general population, with a physio-
logical decline of fertility [64].
 Copyright © 2017 Wolters Kluwe
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Consequently, in order to overcome the diffi-
culties for successful pregnancies, the number of
women with SLE opting for ARTs is constantly grow-
ing. ARTs, which include ovulation induction
therapy and in-vitro fertilization, require ovarian
stimulation that is administered in order to obtain
a multiple follicular growth [65]. Current stimu-
lation protocols can increase the risk of lupus
flares [66], thrombotic events, and ovarian hyper-
stimulation syndrome [67]. Therefore, it is essential
to individualize ARTs procedures to the patient’s
profile.

ARTs are generally safe if the patient has quies-
cent disease [6

&

]. Friendly ovarian stimulation,
single embryo transfer, antithrombotic prophylaxis,
and use of natural oestrogen or progestin through a
nonoral route may constitute the safest approach
[68,69

&

].
Active SLE, poorly controlled arterial hyperten-

sion, advanced renal disease, severe valvulopathy or
heart disease, and major previous thrombotic events
are all situations for discouraging ARTs, especially
due to the high risk of complications for both
mother and foetus during pregnancy and puerpe-
rium [66].

In women with positive aPL undergoning ovar-
ian stimulation, some general measures for prophy-
laxis can be suggested. The type and dosage of
antithrombotic treatment should be recommended
as during pregnancy according to the individual risk
profile. LDA should be stopped three days before
eggs retrieval and resume the following day, while
LMWH should be stopped 12 h prior the procedure
and resumed the very same day as long as there is no
bleeding [2

&&

].
Regarding efficacy, pregnancy rate in SLE

patients is comparable with that of the general
population (up to 30%) [70]. aPL positivity is no
predictor of ARTs failure [71].
r Health, Inc. All rights reserved.
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CONCLUSION

Reproductive aspects including pregnancy, contra-
ception, and feasibility of ARTs are a major concern
in patients with SLE. Thanks to increased awareness
of risk factors, predictive biomarkers of disease reac-
tivation and drugs that can be used in pregnancy,
women with SLE can fulfil their family planning.
Preconception counselling and patient follow-up
during gestation are crucial in order to improve
patient and foetal outcomes by the assessment of
risk factors and the early recognition of disease flares
or pregnancy complications. Counselling about
contraception should be given to the patients in
order to weigh the risk of unintended pregnancy
against the risk of thrombosis or disease reactiva-
tion. Although SLE itself is not a cause of infertility,
these women may have difficulty in conceiving,
especially if alkylating agents have been used. It is
important to know that ARTs in these women are
effective and generally safe if the patient has quies-
cent disease and is on appropriate antithrombotic
treatment if aPL positive.
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 CURRENT
OPINION Socioeconomic consequences of systemic

lupus erythematosus

Megan R.W. Barbera and Ann E. Clarkeb

Purpose of review
The present review addresses recent literature investigating the socioeconomic consequences of systemic
lupus erythematosus (SLE). We highlight the latest updates on health disparities affecting the SLE
population, the direct and indirect economic costs of the disease, and less quantifiable costs such as
reduced health-related quality of life (HRQoL).

Recent findings
Health disparities continue to exist among socially disadvantaged populations, including African
Americans, Hispanics, and patients with decreased educational attainment and in poverty. Direct and
indirect costs are substantial. Recent work provides updated cost estimates for patients with SLE outside of
North America, including those in developing countries. Previous research has largely focused on costs of
the general SLE population and those with renal manifestations or active SLE, whereas recent research
addresses special populations such as hospitalized and pregnant patients and glucocorticoid users. Patients
with SLE and their caregivers experience a substantially reduced HRQoL.

Summary
SLE is a costly disease that disproportionately affects disadvantaged populations. Future economic studies
should measure not only direct costs, but also incorporate indirect costs and the HRQoL of both patients
with SLE and their caregivers. All these components are essential to provide a comprehensive assessment of
the socioeconomic consequences of SLE and an appreciation of the potential impact of novel therapies.

Keywords
direct costs, health-related quality of life, indirect costs, socioeconomic, systemic lupus erythematosus

INTRODUCTION

Systemic lupus erythematosus (SLE) is a hetero-
geneous autoimmune disease, characterized by
multiorgan involvement. Severity ranges from
cutaneous manifestations to life-threatening organ
failure. SLE particularly impacts patients of lower
socioeconomic status, with increased disease preva-
lence and severity. Young women in their peak
reproductive and employable years are predomi-
nantly affected, causing considerable social and
economic impact.

Disease costs can be described as direct, indirect,
or intangible. Direct economic costs include quan-
tifiable expenditures related to the prevention, diag-
nosis, and treatment of the disease. Indirect costs
represent those associated with decreased labor and
nonlabor market activities (such as childcare and
household work). Intangible costs, represented by
decreased health-related quality of life (HRQoL), are
more difficult to quantify, but comprise much of the
illness burden of SLE.

The present review summarizes the latest work
describing the socioeconomic impact of SLE, focus-
ing on the causes and consequences of health
disparity and direct, indirect, and intangible costs.
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KEY POINTS

� Both socioeconomic and genetic factors underlie health
disparities in SLE.

� Direct costs continue to be substantial and are driven
by disease activity and disease damage.

� Recent work continues to define costs in special SLE
populations including hospitalized and pregnant
patients as well as glucocorticoid users.

� The indirect and intangible costs of SLE, and the
burden to informal SLE caregivers, are enormous and
should be considered in future economic studies.

Socioeconomic consequences of SLE Barber and Clarke
Understanding the socioeconomic factors contri-
buting to and the magnitude of the burden of
SLE is essential in guiding future efforts to reduce
disease impact both to society and the individual
patient.
Health disparity and systemic lupus
erythematosus

A large body of evidence, recently reviewed in ref.
[1

&

], describes the health disparity or disproportion-
ate burden of SLE in disadvantaged populations.
Health disparity can be attributed to a variety of
factors. Genetic, environmental, and socioeco-
nomic factors, including educational attainment,
financial resources, healthcare access, and social
support can influence disease prevalence, severity,
and outcome. Much of the literature has focused on
the African American population. African Ameri-
cans are disproportionately affected by SLE, having
increased disease prevalence and severity, damage
accrual, renal involvement, and mortality and
poorer HRQoL, reviewed in ref. [2]. Other popu-
lations substantially affected by SLE include the
American Hispanic, Asian, and Aboriginal popu-
lations, reviewed in ref. [1

&

].
It is difficult to distinguish the role of increased

genetic susceptibility to SLE from contributing
socioeconomic factors in minority populations.
African Americans had an increased risk of death
compared to non-African Americans in a retrospec-
tive cohort study of 12 352 patients with lupus
nephritis induced end-stage renal disease [adjusted
hazard ratio (HR) 1.18; 95% confidence interval
(CI), 1.11–1.25]. However, adjusting for area-level
median household income attenuated this risk
(adjusted HR 1.09; 95% CI, 1.02–1.15), suggesting
that socioeconomic status is a major determinant of
ethnic disparity in the outcome of SLE-related end-
stage renal disease [3].
 Copyright © 2017 Wolters Kluwe
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A recent comparison of 114 Hispanic patients
from Texas in the Lupus in Minorities: Nature
Versus Nurture (LUMINA) cohort with 619 Latin
American Mestizo patients in the Grupo Latino
Americano de Estudio de Lupus (GLADEL) cohort
showed increased damage accrual, as measured by
the Systemic Lupus International Collaborating
Clinics/American College of Rheumatology Damage
Index [SDI; relative risk (RR) 1.33; 95% CI, 1.12–
1.58], and mortality (HR 2.37; 95% CI, 1.10–5.15)
in the Hispanic patients, despite similar genetic back-
grounds [4]. This finding is again suggestive of the
influence of socioeconomic factors on disease out-
come, and therefore modifiable factors may attenu-
ate some of the risk associated with ethnicity.

Both African American and Hispanic patients
with SLE have worse pregnancy outcomes than
Caucasian patients with SLE. A multivariate analysis
of 13 553 SLE deliveries from an American hospital
discharge database demonstrated increased preterm
labor [African American vs. Caucasian odds ratio
(OR) 1.59; 95% CI, 1.41–1.79, Hispanic vs. Cauca-
sian OR 1.51; 95% CI, 1.32–1.73], preeclampsia
(African American vs. Caucasian OR 1.16; 95% CI,
1.02–1.32, Hispanic vs. Caucasian OR 1.44; 95% CI,
1.26–1.65), and intrauterine growth restriction
(African American vs. Caucasian OR 1.50; 95% CI,
1.26–1.79, Hispanic vs. Caucasian OR 1.60; 95% CI,
1.32–1.94) [5

&&

]. Additionally, there was a signi-
ficant increase in stillbirth rate in the African
American patient group compared to Caucasians
(OR 1.61; 95% CI, 1.15–2.25). Acute medical com-
plications including renal failure, pneumonia, and
transfusion were also increased in African American
and Hispanic patients at the time of delivery. The
cost of delivery was correspondingly higher in
African American (19% increased) and Hispanic
patients (42% increased) compared to Caucasians.
The causes of the ethnic disparities were not ident-
ified in this study. Conception planning and preg-
nancy may represent a particularly critical juncture
for SLE monitoring and treatment in minority popu-
lations.

Educational attainment is known to affect SLE
disease outcome. The Canadian 1000 Faces of Lupus
investigators assessed whether education, as a surro-
gate for socioeconomic status, influenced work
disability, disease activity, and organ damage in a
publicly funded healthcare system in a prevalent
population of 562 patients. Low education (not com-
pleting high school) as opposed to education beyond
high school was associated with double the likeli-
hood of work disability (30 vs. 14%, P¼0.0001), and
increased disease activity as measured by the SLE
Disease Activity Index (SLEDAI), but not increased
damage [6

&

]. The influence of education on SLE was
r Health, Inc. All rights reserved.
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also investigated by the Chinese SLE Treatment
and Research Group (CSTAR) on 904 therapy-naive
patients in China. Multivariate regression analysis
showed that lower education was associated with
higher disease activity as measured by SLEDAI
(b coefficient ¼ �0.122; P¼0.001) [7

&

].
Recent literature has started to clarify the associ-

ation between income and disease outcome in
emerging countries. A cross-sectional study of 143
Mexican patients with SLE demonstrated that lower
monthly household income was significantly
associated with organ damage (SDI � 1; OR 4.6;
95% CI, 1.3–16.1) but not disease activity [8].

Providing access to specialist care may mitigate
some of the effect of income on SLE outcome.
Provision of healthcare in Puerto Rico occurs both
privately and publicly, but publicly funded care is
available only to patients with reduced income. A
cross-sectional study of 98 Puerto Rican patients
with SLE demonstrated that patients with publicly
funded care had improved patient-reported out-
comes compared to private patients, despite being
more likely to have renal disease [9

&

]. The authors
suggest that this apparent discrepancy in association
between socioeconomic status and patient-reported
outcomes may be related to enhanced access to
specialty clinics for publicly funded patients.

Social support is another modifiable component
of socioeconomic status. Patients with SLE who
rated their healthcare providers in the lowest quar-
tile for patient–physician communication had
increased damage in the subsequent 2 years as
measured by at least a two-point increase in Brief
Index of Lupus Damage (BILD) score (adjusted OR
2.35; 95% CI, 1.25–4.39). Patients who felt their care
coordination was poor also accrued more disease
damage (adjusted OR 2.20; 95% CI, 1.12–4.34).
Thus, improving healthcare provider–patient
relationships may favourably influence SLE out-
comes [10

&

].
One of the few papers to specifically focus on

health disparities experienced by youth with SLE/
mixed connective tissue disease interviewed 16
patients and reported that those who adapted
poorly to their disease had lower socioeconomic
status, HRQoL, and psychosocial functioning, and
increased disease morbidity [11].
Direct economic costs of systemic lupus
erythematosus

Despite the fairly low prevalence of SLE, some
patients, particularly those with advanced disease
and organ failure, can accrue considerable costs,
making the societal impact quite substantial. Direct
costs include healthcare visits, hospitalizations,
 Copyright © 2017 Wolters Kluwer 
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medications, diagnostic and therapeutic laboratory
and imaging procedures, and renal replacement
therapies. Previous literature estimates annual costs
to be $34 146 for the general SLE population, $73
306 for patients with lupus nephritis, and between
$13 869 and $56 882 for patients with severe or
active SLE [1

&

].
Recent literature provides updated cost of illness

estimates for populations outside of Canada and the
United States. A South Korean cohort study of 749
prevalent patients revealed that mean annual direct
costs were $3692 (SD $5909) with predictors of
increased cost including higher disease activity (as
measured by the SLEDAI-2K) and damage per the
SDI, and renal and hematologic involvement per
ACR classification criteria [12].

Other recent costing updates include a cohort
study of over 1000 prevalent patients with SLE from
Sweden. This study reported an annual total cost of
$36 138 (SD $ 49 473), with direct costs of $11 033
(SD $30 704), including outpatient visits, inpatient
days, and medications. These costs were likely
underestimated, as primary care visits were not
included in the analysis. Disease activity (SLEDAI-
2K > 3) was associated with a 50% increase in direct
and indirect costs. Costs were also increased with
advancing age and renal, neuropsychiatric, and
musculoskeletal organ damage [13].

A chart review of over 200 patients in Greece
demonstrated annual direct costs that were three-
fold higher in patients with severe disease [defined
as active involvement of renal, neurological, cardi-
ovascular, or respiratory domains by the modified
British Isles Lupus Assessment Group (BILAG) dis-
ease activity index and requiring a prednisone
equivalent >7.5 mg/day and/or immunosuppres-
sants], as opposed to nonsevere patients [mean
annual direct medical cost $5181 (SD $7873) vs.
$1697 (SD $2831)] [14]. Cost predictors included
an SDI score >0, disease flares, renal involvement,
and advancing age.

Recent literature is addressing, for the first time,
costs that occur in specific lupus populations,
including those who are hospitalized, pregnant, or
on glucocorticoids. Anandarajah et al. examined the
reasons precipitating admission to a New York hos-
pital. Infection was the most common responsible
diagnosis for both admission and readmission. The
average length of stay was 8.5 days with mean
hospitalization direct costs per admission of $ 20
934 [15

&

]. Twenty-four percent of outpatients with
SLE required admission annually. Forty-five percent
of all admissions were readmissions, the majority of
which occurred within a month of the initial hos-
pitalization. Given the preponderance of infectious
admissions, prompt access to outpatient care and
Health, Inc. All rights reserved.
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vaccination optimization are suggested strategies to
reduce SLE admissions [15

&

].
Direct costs have recently been estimated for

pregnant SLE patients. A U.S. healthcare claims data-
base demonstrated increased direct costs in 1721
pregnant women with SLE compared to 8605 preg-
nant women without SLE. Mean costs were $22 821
(SD $25 929) in SLE patients for the duration of their
pregnancy and postpartum period, versus $12 182
(SD $11 267) for pregnant women without SLE.
Medication, outpatient, and inpatient costs were
all increased in patients with SLE [16].

Increased healthcare utilization and costs occur
with advancing glucocorticoid use. A U.S. insurance
claims database showed annual total costs of $22
849 (SD $49 379) among all patients with SLE,
whereas patients with no glucocorticoid exposure
in the preceding year had total costs of $17 148 (SD
$39 226) and high-dose users had costs of $48 128
(SD $80 922) [17

&

]. Low-dose glucocorticoid users
had reduced costs if also prescribed glucocorticoid-
sparing agents. As the study was observational and
lacking randomization, it was unable to address
whether the increased costs associated with gluco-
corticoid use reflect increased disease severity and
are therefore confounded by indication, or whether
costs are increased because of glucocorticoid-related
adverse events.

A 2016 study of 1611 incident SLE patients ident-
ified via a U.S. claims database again demonstrated
that those patients receiving glucocorticoid mono-
therapy had the highest costs compared to patients
receiving other medication classes. Moderate cortico-
steroid users had direct costs of $96 846 (SD $165 147)
over 4 years as opposed to $53 639 (SD $108 966) for
all patients with SLE. Patients receiving persistent
heavy hydroxychloroquine monotherapy had lower
direct costs [$39 515 (SD $58 336)] than either all
otherpatientswith SLE, orminimally treated patients
[$48 012 (SD $116 188)] [18

&

].
Indirect costs of systemic lupus
erythematosus

Indirect SLE costs have been estimated at $1287–$20
603 per year, reviewed in ref. [1

&

].
A recent Swedish cohort study, mentioned pre-

viously, demonstrated that 70% of total costs are
indirect. This study considered work absence, but
not lost productivity in nonlabor activities such as
childcare. Higher indirect costs were associated with
female, advancing age, and neuropsychiatric and
renal organ damage [13].

A recent study reported indirect costs incurred
by caregivers of patients with SLE, a group not
typically reflected in economic analyses. Al Salwah
 Copyright © 2017 Wolters Kluwe
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et al. [19
&&

] surveyed over 250 SLE caregivers and
found that most are the intimate partners of patients
with SLE. Seventy-five percent of caregivers assisted
the patient financially and many reported negative
effects on work such as leaving paid employment,
working less hours, decreasing work responsibility,
earning less income, and experiencing increased
stress at work. Future studies which quantify indi-
rect costs to not only SLE patients, but also their
family members, will better capture the true
economic burden of SLE.
Intangible costs of systemic lupus
erythematosus

Health-related quality of life refers to the effect of
disease on a patient’s perception of their overall
wellbeing, including physical, emotional, and social
domains.

Factors associated with reduced HRQoL in
467 international childhood-onset SLE patients
included female sex, increased disease activity and
damage, non-Caucasian ethnicity, and use of cyclo-
phosphamide and/or rituximab [20

&

]. Adult patients
also reported decreased HRQoL with increased dam-
age occurrence [21].

In the SLE caregivers’ study described above, care-
givers also reported several psychosocial stressors,
including decreased socialization and engagement
with personal interests, as well as increased anxiety
and stress. Burnout was present in over a third of
caregivers. Almost 60% of caregivers felt their burden
would be eased with additional advice regarding how
to respond to medical problems, and more focus on
the emotional impact of caring for patients with SLE.
Thus, a concerted effort by healthcare providers to
engage caregivers in medical appointments and refer
them for psychosocial supports is needed [19

&&

]. In a
survey of 162 patients with SLE [22

&

], increased self-
efficacy was associated with improved HRQoL, again
underscoring the importance of psychosocial sup-
ports in the SLE population.
CONCLUSION

The latest literature on the socioeconomic con-
sequences of SLE continues to demonstrate health
disparities in disadvantaged populations, including
African Americans, Hispanics, and patients with
decreased education, income, and healthcare access.
Identifying populations who are at highest risk for
severe SLE is essential to ensure that appropriate
resources are allocated to the most vulnerable.

It is difficult to compare direct costs across
studies as estimates are heavily influenced by the
study design and are often incomplete. Many SLE
r Health, Inc. All rights reserved.
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costing studies utilize insurance claims databases
that have the advantage of capturing large popu-
lations, but they cannot stratify patients with SLE
according to disease severity and damage and they
exclude the uninsured. Although cohort studies are
expensive, they provide much more diagnostic cer-
tainty and data regarding disease severity, which is
particularly important in a disease as phenotypically
diverse as SLE. Much of the focus of costing is on
direct costs. For a disease that disproportionately
affects young women in their peak reproductive and
educational/economic years, the indirect costs of
lost productivity are enormous and need to be
incorporated into economic analysis. Future studies
should also endeavor to include economic costs for
informal SLE caregivers, whom are typically inti-
mate partners. This will provide a more accurate
representation of actual economic cost to families.
Detailed economic studies are necessary to demon-
strate that the anticipated costs associated with the
novel emerging therapies are likely to be commen-
surate with their benefits.

Intangible costs, as represented by decreased
HRQoL, are arguably the most significant to
patients. Drivers of HRQoL include damage accrual,
and thus prompt diagnosis, minimization of gluco-
corticoid use, and aggressive treatment of SLE is
predicted to improve HRQoL. Insight into the SLE
illness experience allows for a therapeutic relation-
ship between the healthcare team and the patient,
and provides a compelling compassionate argument
for funding of allied health supports such as phys-
iotherapy, social work, and psychology to mitigate
the impact of illness.
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reported outcome measures in a population of medically indigent patients
with systemic lupus erythematosus in Puerto Rico. SAGE Open Med 2016;
4:1–5.

An interesting observation that Puerto Rican patients treated in the public
system by specialty clinics have improved patient-reported outcomes
compared to their privately treated counterparts, despite lower socioeconomic
status.
10.
&

Yelin E, Yazdany J, Trupin L. Relationship between process of care and
subsequent increase in damage in SLE. Arthritis Care Res 2016. [Epub ahead
of print]

This study correlates low ratings of patient–provider communication and care
coordination with accumulation of SLE damage. Thus, quality of the therapeutic
relationship between patients and care providers can affect SLE outcomes.
11. Knight A, Vickery M, Fiks AG, Barg FK. The illness experience of youth with

lupus/mixed connective tissue disease: a mixed methods analysis of patient
and parent perspectives. Lupus 2016; 25:1028–1039.

12. Park SY, Joo YB, Shim J, et al. Direct medical costs and their predictors in
South Korean patients with systemic lupus erythematosus. Rheumatol Int
2015; 35:1809–1815.
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 CURRENT
OPINION Musculoskeletal manifestations of systemic lupus

erythmatosus

Khaled Mahmouda,b, Ahmed Zayata,b, and Edward M. Vitala,b

Purpose of review
Imaging studies suggest potential changes to the classification and assessment of inflammatory
musculoskeletal lupus. This is important because of the burden of disease but the potential for new targeted
therapies.

Recent findings
Using our current classification and treatment, musculoskeletal symptoms continue to impact significantly on
quality of life and work disability. Ultrasound and MRI studies suggested that new approaches to the
diagnosis, classification, and evaluation of these symptoms are needed. Many patients with pain but no
synovitis have ultrasound-proven joint and tendon inflammation but would not qualify for clinical trials or
score highly on disease activity instruments. MRI studies show that erosions are more common than
previously thought and may have a different pathogenesis than RA. Immunology studies suggest differences
from other autoimmune synovitis, with a complex role for type I interferons. A wide range of biologic
therapies appear more consistently effective for arthritis than some other manifestations.

Summary
Changes to the selection of patients for therapy and stratification using musculoskeletal imaging may offer
new approaches to clinical trials and the routine care of systemic lupus erythematosus patients with
inflammatory musculoskeletal symptoms. Outcomes may thereby be improved using existing therapies.
There are significant knowledge gaps that must be addressed to achieve these potential improved
outcomes.

Keywords
arthritis, biological therapy, MRI, systemic lupus erythematosus, ultrasonography

INTRODUCTION

Musculoskeletal manifestations are among the most
common features of systemic lupus erythematosus
(SLE) both in initial diagnosis and in long-term
management. They are crucial to overall patient
outcome as well as the development of new
therapeutics. This review concentrates on impact,
classification, assessment, and treatment of inflam-
matory musculoskeletal manifestations.

IMPACT OF MUSCULOSKELETAL
MANIFESTATIONS OF SYSTEMIC LUPUS
ERYTHEMATOSUS

Musculoskeletal manifestations of SLE are the first
presenting symptom in up to 50% of SLE patients
and affect up to 95% during the clinical course
[1–3]. Although other manifestations may be more
important in causing organ failure and early
mortality, musculoskeletal manifestations are the
key determinant of impact of disease for a larger

group of patients. Apart from fatigue, the most fre-
quent symptoms reported by 324 SLE patients in
answer to the question ‘What SLE-related symptoms
have you experienced as most difficult during your
disease?’were pain (50%) and musculoskeletal (46%).
Further, these symptoms were most strongly related
to reduced health-related quality of life [4]. In system-
atic review, 47% of SLE patients were employed and
34% had work disability [5]. Of individual features of
SLE disease activity, arthralgia was the only one to be
significantly associated with work disability, with
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KEY POINTS

� Musculoskeletal manifestations are major contributor to
poor quality of life and work instability despite current
therapy.

� Clinical assessment underestimates level of joint and
tendon inflammation compared to ultrasonography and
MRI with implications for patient selection for therapy
and evaluation of response.

� Erosions are more common in SLE than previously
thought and may have a different pathogenesis to
rheumatoid arthritis.

� Type I interferons may have a complex role in synovitis
in SLE and some RA patients yet are a promising
therapeutic target.

� A wide range of biologic therapies appear consistently
effective for musculoskeletal disease.

Musculoskeletal SLE Mahmoud et al.
odds ratio (OR) 2.41 [95% confidence interval (CI)
1.53–3.79] [6]. By comparison, overall disease
activity measured by systemic lupus erythematosus
disease activity index (SLEDAI) had no association
with work disability, and by SLAMM had only a
modest association (OR 1.12, 95% CI 1.03–1.21).
Only age, household income, and fibromyalgia were
more strongly associated with work disability. In
longitudinal follow-up, 34% of patients with muscu-
loskeletal manifestations stopped working after
median 4 years [7]. Arthralgia is, therefore, one of
the most important modifiable factors in disability
and participation in SLE patients.

Musculoskeletal manifestations of SLE are fre-
quently treated with glucocorticoids and NSAIDs,
both of which may increase the rate of long-term
cardiovascular complications. A recent French study
found that cardiovascular disease is the greatest cause
of mortality in SLE [8], and in a 2016 systematic
review cardiovascular diseases were most strongly
associated with increased standardized mortality
ratios in SLE after renal disease and infection [9].
Interestingly, cluster analysis of systemic lupus inter-
national collaborating clinics/American college of
rheumatology damage index domains found clusters
defined by low damage, musculoskeletal damage,
and cardiovascular damage, with death rates of 3.7,
10.8, and 20.5%, respectively [10

&

].
Regarding therapeutics: the majority of nonrenal

lupus patients qualify for clinical trials and biologic
therapy because of disease activity in skin and mus-
culoskeletal systems. For example, in the ILLUMI-
NATE-1 phase III trial of tabalumab, 78.8–83.5% of
patients had activity in the musculoskeletal system in
each arm. Only skin disease was more common, and
 Copyright © 2017 Wolters Kluwe
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the proportions of patients with activity in other
organs was far smaller: the next largest clinical mani-
festation was haematologic – approximately 11% of
patients [11]. In total, 31% of all renal and nonrenal
SLE patients treated with a biologic in the UK-based
British Isles Lupus Assessment Group Index (BILAG)
biologics registry received it for musculoskeletal
disease [12].
CLASSIFICATION OF MUSCULOSKELETAL
SYSTEMIC LUPUS ERYTHEMATOSUS

Many previous reviews, have focused on two clin-
ically distinctive phenotypes of lupus arthritis:
Jaccoud’s arthropathy and Rhupus. Jaccoud’s
arthropathy was first described as a nonerosive
arthropathy with reversible deformities in associ-
ation with rheumatic fever. An identical phenotype
was noted in patients with SLE in 1975 [13],
although it may also occur in other connective
tissue diseases. Although, this appearance is now
frequently cited in textbooks as being highly charac-
teristic of SLE, it is in fact quite uncommon.
Estimates of prevalence from the modern era of
investigation of SLE range from 2.8 to 3.5% [14,15].

Approximately 5% of SLE patients are estimated
to present with ‘Rhupus’. These patients meet criteria
for both Rheumatoid arthritis (RA) and SLE, have
an erosive arthritis with identical radiographic
appearance to RA, and has also been associated with
rheumatoid factor and anticitrullinated peptide
antibodies, suggesting common pathogenesis and
genetics to more typical RA [16,17]. A recent study
compared features of lupus arthritis in children and
adults. Although chronic polyarthritis arthritis
tended to be more common and severe in children,
rates of Jaccoud’s and Rhupus did not differ [18

&

].
The vast majority of patients with lupus arthritis

are, therefore, often described a nondeforming non-
erosive (NDNE) arthritis. Although these patients all
have similar inflammatory features to other inflam-
matory arthritis, such as symmetrical small joint
distribution and morning stiffness, clinically detect-
able synovitis is present in a minority of cases. Disease
activity indicesand inclusioncriteria for clinical trials
have tended to focus on the subset of patients clinical
synovitis (discussed further below).

Recent investigative techniques have led to the
proposal of alternative classifications that would
change approaches to assessment and treatment
[19,20].
Subclinical synovitis

One of the most important, of recent insights, has
been the observation from ultrasound studies that
r Health, Inc. All rights reserved.
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FIGURE 1. High resolution ultrasound image of an MCP joint
of a patient with systemic lupus erythematosus. This patient
had pain in small joints with morning stiffness and symmetry,
but no clinical swelling, warmth, or effusion. The BILAG
musculoskeletal domain score was, therefore, C. The
ultrasound confirms greyscale as well as power Doppler
synovitis – abnormalities considered to be definite active
inflammation in other inflammatory arthropathies. MCP,
metacarpopharngeal.

Systemic lupus erythematosus and Sjogren syndrome
large numbers of lupus patients with arthralgia,
despite the lower rates of synovitis compared to
other inflammatory arthritides (Fig. 1). This is cru-
cial for clinical practice and trials because existing
clinical disease activity instruments are all heavily
weighted by the presence of synovitis (see below).
Our group recently published a systematic review of
these studies [21

&&

]. Although nine studies including
459 patients all agreed with the existence of sub-
clinical synovitis, there were methodological con-
siderations that needed addressing before these
results could be applied to clinical practice. Rates
of Ultrasound-detected synovitis reported in these
studies vary widely. For example, rates of power
Doppler abnormality ranged from 10 to 82%. One
reason, for this may be the inclusion of variable
numbers of Rhupus patients in most of the studies.
Second, although most studies reported using out-
come measures in rheumatoid arthritis clinical trials
(OMERACT) definitions for ultrasound abnormal-
ity, few of them actually reported levels of abnor-
mality. Ultrasound synovitis was reported as present
or absent, and the definition of abnormality often
included grade 1 greyscale synovitis only, which
may be found in osteoarthritis and hypermobile
joints as well as inflammatory arthritis. A recent
cross sectional study, in 107 consecutive patients
with musculoskeletal symptoms addressed these
limitations by excluding patients with rheumatoid
factor or cyclic citrulinated peptide and analysing
according to OMERACT definitions [22,23]. Ultra-
sound changed clinical classification (synovitis/no
synovitis) in 23% of patients. In total, 60% with
inflammatory joint symptoms had no clinical syn-
ovitis, but of these 44% had any ultrasound
 Copyright © 2017 Wolters Kluwer 
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synovitis [Grey Scale � 2 or power Doppler (PD)
� 1], 28% had PD synovitis, 25% had severe PD
synovitis, and 19% had tenosynovitis. Overall one
in five symptomatic lupus patients has confirmed
joint or tendon inflammation that is not detected
clinically. Meanwhile, in 17% of patients with
BILAG B or SLEDAI arthritis criterion, ultrasound
was normal. In patients without clinical synovitis,
inflammatory features on ultrasound appear in ten-
dons more commonly than joints [24].

While prevalence of subclinical synovitis is
agreed, it is not yet clear whether it can can truly
account for symptoms and should be treated. Recent
data indicate that patients with no joint swelling but
subclinical synovitis on ultrasound have signifi-
cantly worse tender joint counts than those with
normal ultrasound [median (Interquartile range)
6(10) vs. 1(7), P¼0.01] [23]. Notably, although both
patients and physicians rated musculoskeletal dis-
ease activity higher on a 0–100-mm visual analogue
scale (VAS) when there was subclinical synovitis, the
patients’ median rating (55/100) was much higher
than the physicians’ (15/100). These results, there-
fore, suggest that physicians underrate disease
activity in the absence of joint swelling. A pilot
prospective study has suggested that ultrasound
abnormality is more responsive than clinical out-
come measures after glucocorticoid therapy [25].
Erosion

The presence of erosions using X-ray has been used
as the key feature to differentiate Rhupus (deform-
ities and erosions), Jaccoud’s arthropathy (deform-
ity but no erosion), and NDNE. The erosion data
from imaging studies have revised this view. A large
ultrasound study in an unselected lupus arthritis
population, 87% of patients with Rhupus had ero-
sions as expected. However, erosions were also
found in 17 and 22% of the Jaccoud’s and NDNE
groups, respectively [24]. An MRI study found ero-
sions in 45% of carpal bones, again present in all
types of lupus arthritis. These rates of erosion also
seem to exceed prevalence of Rhupus and Jaccoud’s
in their conventional definitions, so their clinical
significance is less clear than in RA. Additionally, a
detailed MRI study has suggested that their patho-
genesis differs. Erosions in SLE patients are present
in the absence of anticitrullinated peptide anti-
bodies [26

&&

]. Anticitrullinated peptide antibodies
in SLE patients were often reactive against the argi-
nine-containing equivalent peptide, in contrast to
RA [27]. In RA, synovitis then bone oedema are the
precursors of bone erosion. However, in SLE many
bones affected by erosion had either no synovitis, or
synovitis at a level that would not lead to erosion in
Health, Inc. All rights reserved.
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an RA patient [26
&&

]. Although these RA and SLE
populations had similar frequencies of erosions,
bone oedema was significantly less frequent in
SLE. Interestingly, interferon-b has been shown to
inhibit osteoclastogenesis in vitro, therefore poten-
tially retarding erosion (among other regulatory
effects discussed below), although the relevance of
this for human arthritis has not been proven [28,29].
IMMUNOPATHOGENESIS

At a molecular level, synovial gene expression stud-
ies in SLE patients demonstrate a distinct appear-
ance from both osteoarthritis and RA. SLE synovium
has marked upregulation of type I interferon-stimu-
lated genes and downregulation of extra-cellular
matrix homeostasis [30]. The stratification of SLE
according to type I interferon status is increasingly
important as this may predict response to a range of
therapies [31]. The role of type I interferons in
arthritis may be complex. Interferon (IFN)-a, prim-
arily produced by circulating plasmacytoid den-
dritic cells and monocytes is generally associated
with more severe disease in SLE [31]. However,
although blood interferon activity is related to over-
all disease activity and individual organs such as
mucocutaneous disease, it is not clearly related to
arthritis [32]. Synoviocytes and fibroblasts produce
interferon-b and this has been shown experimen-
tally to have regulatory roles, with downregulation
tumour necrotizing factor- a and upregulation of
tumour growth factor- b, Interleukin (IL)-10, and IL-
1ra [33–36]. Meanwhile, an interferon regulatory
factor 5 risk haplotype for SLE is also associated
with nonerosive rheumatoid factor-negative RA
suggesting overlapping interferon-mediated patho-
genesis [37], suggesting that a subset of RA patients
have more SLE-like disease. Understanding the roles
of type I interferons in SLE is of renewed interest as
therapies that target this pathway are now in phase
III trials and have demonstrated efficacy for arthri-
tis-specific outcomes when targeting either (IFN)-a
alone or the interferon receptor that is shared by
IFN-a and IFN-b [38,39].
CLINICAL ASSESSMENT OF LUPUS
ARTHRITIS

Recent clinical trials of biologics in SLE have led to a
reappraisal of outcome measures and the definition
of new composite endpoints. Lower frequency of
clinical synovitis is a challenge in identification of
patients amenable to immunosuppressive therapy, as
well as in the assessment of response in clinical trials
and routine practice [40]. In the various forms of the
SLEDAI this is accounted for by the inclusion of
 Copyright © 2017 Wolters Kluwe
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erythema or warmth to define synovitis, as well as
just joint swelling. In total, 4 points are scored for two
or more joints with these signs (SLEDAI-2K) or more
than two joints (SELENA–SLEDAI), and no points for
lesser degrees of inflammation. However, these signs
are more subjective than joint swelling and partial
response cannot be captured. In clinical trials of
belimumab an endpoint primarily based on the SLE-
DAI called the SLE responder index (SRI) was devel-
oped and has been used in trials of other agents [41].
The key criterion to meet this endpoint is a 4-point
reduction in SLEDAI (qualified by no worsening in
BILAG or Physician’s Global Assessment). Hence, this
criterion may be met by improvement in arthritis
alone (even if disease in other organs remains active).
However, meeting the criterion for arthritis response
may not accurately capture all clinically meaningful
change. Additionally, 4 points may be awarded for
serological parameters, so patients who have no
change in arthritis but with improvement in sero-
logical criteria may meet the SRI endpoint.

The BILAG-2004 index is semiquantitative for
each organ system assessed. For the musculoskeletal
domain, BILAG A (the highest score) requires
observed active synovitis more than two joints with
marked loss of functional range of movements.
BILAG B is scored for tendonitis/tenosynovitis or
active synovitis more than one joint (observed or
through history) with some loss of functional range
of movement (or improving BILAG A disease). BILAG
C is scored for inflammatory pain (e.g. with morning
stiffness) without synovitis (or improving BILAG B
disease). Pain without inflammatory symptoms (e.g.
pain that clinically appears to be because of osteoar-
thritis) is scored as BILAG D, as are patients with no
current symptoms. Analogous to the SRI from the
SLEDAI, the based combined lupus assessment
(BICLA) is a clinical trials endpoint derived princi-
pally from the BILAG. BICLA requires reduction of
BILAG A or B scores by at least one grade (qualified by
no worsening in other BILAG domains, SLEDAI,
physician global VAS or treatment failure).

Overall in scoring of arthritis, both these indices
usually based on detection of swollen joints. The
BILAG/BICLA allows response based on partial
improvement in synovitis, unlike the SLEDAI. The
BILAG C grade and SLEDAI ‘tenderness, warmth,
and erythema’ criteria are similar in that they allow
for scoring of subclinical synovitis. Only the SLE-
DAI/SRI allows this to qualify as treatment response.
THERAPIES FOR MUSCULOSKELETAL
SYSTEMIC LUPUS ERYTHEMATOSUS

Although, arthritis is a common feature in clinical
trials population, many trials have not analysed
r Health, Inc. All rights reserved.
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FIGURE 2. Current knowledge (solid arrows and boxes) and
knowledge gaps (dotted arrows and boxes)in the treatment
of inflammatory musculoskeletal SLE. See text for details. Key
knowledge gaps are: (i) the value of immunosuppressive
treatment for subclinical synovitis is not proven, nor the
outcome of symptomatic treatment only in patients with
normal imaging; (ii) erosions are more widespread than
radiographic studies indicated but their long-term
significance and any benefit of immunosuppression, are
unknown; (iii) although SLE is heterogeneous for serology
and interferon status, these stratifiers have not been
investigated with respect to therapy. SLE, systemic lupus
erythematosus.

Systemic lupus erythematosus and Sjogren syndrome
response in individual organ domains. For conven-
tional therapy of SLE, azathioprine, mycophenolate,
or cyclophosphamide are frequently selected
because of their clearly established efficacy, especi-
ally in renal disease. However, these agents tend to
be less effective than methotrexate in RA and other
inflammatory arthritis. For this reason, methotrex-
ate is frequently suggested as a first-line immuno-
suppressive in lupus arthritis [40]. Evidence for the
overall efficacy of methotrexate in nonrenal SLE is
mixed. Steroid sparing, but not global (Systemic
Lupus Activity measure and SLEDAI) disease activity
reduction was found in one randomise control trial
[42]. However, two smaller randomized trials did
demonstrate efficacy in some arthritis-specific out-
come measures [43,44].

Similarly, in trials of biologic therapies, some
trials have reported organ-specific outcomes includ-
ing arthritis. Of these, some studies show differences
in efficacy between individual domains, especially
comparing skin and arthritis. Arthritis is frequently
one of the most responsive organ systems.

Belimumab is the only biologic licensed for
lupus. Arthritis was the first and second most com-
mon manifestation at baseline in two phase III
studies [45,46]. Individual BILAG domain responses
were published as a post hoc analysis of the pooled
population [47]. These results showed good efficacy
in the musculoskeletal domain, with 60.7% of the
patients with active disease at baseline (in the com-
bined active arms) improving by at least one BILAG
grade, compared to 50% of those on placebo. This
was somewhat better than mucocutaneous disease
(the next most common manifestation) which had
improvement rates of 47.8 and 39.1% for the com-
bined active and placebo groups, whereas no sub-
stantive difference between groups was observed for
the less common domains of renal and haemato-
logical. Further, rates of worsening were reduced
from 5.0 to 3.9/3.8% for the 1 and 10-mg/kg
active groups in musculoskeletal disease. By com-
parison, rates of worsening in mucocutaneous
domain were 4.5, 4.3, and 5.4% in the placebo,
1 and 10-mg/kg arms. Similarly, improvements were
seen in associated quality of life domains of the
Short Form Survey 36, such as physical function
and bodily pain [48

&

].
A flare study of abatacept in patients with arthri-

tis, discoid lesions or pleuritis showed a reduction in
BILAG-defined flare rate with abatacept for arthritis
but not discoid lesions [49]. Our own group’s open
label data suggested a similar difference in efficacy
using rituximab, with consistent efficacy in muscu-
loskeletal disease but variable efficacy for mucocu-
taneous manifestations, with notable nonresponse
in discoid lupus [50

&

,51].
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Although, phase III trials for the B-cell-targeted
biologic epratuzumab were negative, positive phase
II data previously reported include efficacy in the
musculoskeletal domain of BILAG [52]. Phase II
data using the type I interferon-targeted biologics,
sifalimumab, and anifrolumab included joint
counts as secondary endpoints, demonstrating
greater reductions in treatment groups compared
to placebo [38].

Overall, arthritis often appears more responsive
to immunosuppressive therapy than mucocutane-
ous disease (the next most frequent manifestation
in all studies) using existing validated outcome
measures. Further, arthritis was more uniformly
Health, Inc. All rights reserved.
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responsive to a wide range of conventional and
targeted therapies.
SUMMARY OF CURRENT EVIDENCE FOR
THERAPY

Evidence discussed in this review that might be used
to inform treatment decisions is summarized in
Fig. 2. Of patients with inflammatory joint symp-
toms, methotrexate and belimumab are effective for
patients with synovitis in reducing symptoms and
signs, glucocorticoid use, and improving quality of
life. Similar benefits seem likely for other immuno-
suppressants and biologics based on various other
types and strengths of evidence. That such therapy
will reduce progression of erosions and deformity is
not proven, but seems likely given the association of
erosion with clinical synovitis in SLE, and parallel
evidence in RA. This treatment pathway is, there-
fore, reasonably well proven in the context of SLE
therapeutic evidence.

However, this pathway only applies to approxi-
mately one third of all SLE patients with inflamma-
tory joint symptoms. The most appropriate
therapeutic decisions are far less clear in the absence
of synovitis. One third of these patients have sub-
clinical synovitis on ultrasound. This subclinical
synovitis group, therefore, represents the second
largest subgroup of all SLE patients with joint symp-
toms, and a large proportion of SLE as a whole. This
subgroup would not have met the inclusion criteria
for clinical trials of immunosuppressive therapy
or biologics and the long-term consequences or
benefits of therapy are not well defined.
CONCLUSION

Modern therapies have dramatically reduced
mortality in SLE but quality of life remains poor.
Recent data suggest that changes to classification
and assessment may allow improved outcomes
using existing therapies.
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 CURRENT
OPINION Unraveling the pathogenesis of periodic fever,

aphthous stomatitis, pharyngitis, and cervical
adenitis through genetic, immunologic, and
microbiologic discoveries: an update

Kalpana Manthirama,b, Sivia Lapidusc, and Kathryn Edwardsb

Purpose of review
Periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) syndrome is considered the most
common periodic fever syndrome of childhood. Although it was first described three decades ago, the pathogenesis
has been poorly understood. Recent studies on the heritability and immunology of the disorder have begun to shed
light into the mechanisms of this autoinflammatory disorder. This review will focus on the pathogenesis of PFAPA,
especially as it pertains to the genetic susceptibility, tonsillar immunology, and the role of the microbiome.

Recent findings
Recent literature provides insights into the heritability, potential genetic modifiers, and the immunologic and
microbiological profile of the tonsils in this syndrome.

Summary
Evidence is mounting that PFAPA is inherited as a complex genetic disease. Furthermore, tonsillectomy is
curative in the majority of patients, including those who do not meet the complete clinical criteria for
PFAPA. The tonsils in PFAPA patients may exhibit unique immunologic and microbiological features. The
goal of this review is to outline these new developments.

Keywords
autoinflammatory, periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis, tonsils

INTRODUCTION

Periodic fever, aphthous stomatitis, pharyngitis, and
cervical adenitis (PFAPA) syndrome was initially
described in 1987 and is considered to be the most
common periodic fever syndrome of childhood. The
cause of this syndrome, however, remains a mystery.
The genetic heritability of the disorder has been
controversial, but recent studies on heritability and
the search for candidate genes have begun to provide
some clues into the pathogenesis of this disorder. In
addition, recent studies support the curative role of
tonsillectomy and show the immunologic and
microbiome profiles in the tonsils of patients with
PFAPA. The diagnosis of PFAPA is based onthecriteria
proposed by Thomas et al. [1] (Table 1).

HERITABILITY OF PERIODIC FEVER,
APHTHOUS STOMATITIS, PHARYNGITIS,
AND CERVICAL ADENITIS SYNDROME

Since the initial report of PFAPA, several familial cases
have been described in the literature particularly

among siblings and parent–child pairs [2–5]. Prior
to these case series, PFAPA was thought to be a
sporadic disease [6]. Moreover, the syndrome does
not appear to cluster in particular ethnic groups
with cases reported from the United States, Japan,
Europe, South America, and the Middle East,
suggesting the lack of a common genetic suscepti-
bility factor [1,5,7–9]. However, recent descriptions
of cohorts report that 10–78% of patients have a
family member with ‘recurrent fever’ suggesting that
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KEY POINTS

� Heritability studies of familial clustering suggest that
PFAPA may be inherited in an autosomal dominant
pattern with many family members having reduced
penetrance phenotypes.

� Inflammasome/IL-1b pathway genes and genes
involved in other periodic fever syndromes may
modulate disease manifestations in some populations of
patients with PFAPA.

� Tonsils from patients with PFAPA had a lower
percentage of B lymphocytes and higher percentage of
some T lymphocyte subsets from patients with
sleep apnea.

� Tonsils from patients with PFAPA may have a unique
microbiome composition.

Pediatric and heritable disorders
familial clustering may be more common than
originally thought [10–13].

Recently, two groups have performed more com-
prehensive assessments of inheritance [14

&&

,15
&&

].
Manthiram et al. [15

&&

] systematically evaluated
the family history in 80 patients with PFAPA
and found that 18 (23%) had at least one family
member with symptoms suggestive of PFAPA, with
most of the family pedigrees suggesting an autoso-
mal dominant inheritance pattern. However,
affected individuals within families did not show
strong concordance in terms of episode character-
istics such as age of onset or length of intervals
between episodes; implying that environmental
factors might influence the phenotypic manifes-
tations of the disease. Familial clustering alone
does not prove that a disease is inherited, as it
can also indicate common environmental triggers
shared among family members. However, in
this cohort, living in the same household did not
significantly increase the likelihood of a first-degree
or second-degree family member having PFAPA or
PFAPA-like features.

In comparison with healthy controls, Man-
thiram et al.’s PFAPA cohort was significantly more
likely to have first-degree family members with
 Copyright © 2017 Wolters Kluwer 

Table 1. Original diagnostic criteria for periodic fever, aphthous

I Regularly recurring fevers with an early age of onset (<5 years o

II Constitutional symptoms in the absence of upper respiratory infec
lymphadenitis pharyngitis

III Exclusion of cyclic neutropenia

IV Completely asymptomatic interval between episodes

V Normal growth and development
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recurrent pharyngitis, recurrent aphthous stomati-
tis, or both. In addition, siblings of children with
PFAPA were significantly more likely to have under-
gone tonsillectomy. These data informed the hy-
pothesis that family members with recurrent
pharyngitis or recurrent aphthous ulcers (who do
not meet the strict diagnostic criteria for PFAPA)
may represent reduced penetrance phenotypes of
PFAPA syndrome. Di Gioia et al.’s analysis of 14
families of PFAPA patients showed an autosomal
dominant inheritance pattern with an estimated
penetrance factor of 50% if Mendelian inheritance
was assumed.

Both of these studies clearly show familial clus-
tering with an autosomal dominant inheritance
pattern, suggesting that susceptibility to PFAPA
may be inherited. However, the presence of many
family members with incomplete penetrance phe-
notypes and poor concordance of episode charac-
teristics among affected family members do not
diminish the role environmental influences may
play in disease manifestations. These studies also
highlight the importance of careful questioning of
families about relatives with not only recurrent
fever, but also with recurrent aphthous stomatitis
and/or recurrent pharyngitis/tonsillitis, since these
findings were common in family members of
patients with PFAPA.
GENOMIC ANALYSIS OF PERIODIC
FEVER, APHTHOUS STOMATITIS,
PHARYNGITIS, AND CERVICAL ADENITIS

Di Gioia et al. [14
&&

] recently published results of their
exhaustive genetic screening techniques to identify
causative mutations in patients with PFAPA.
Genome-wide linkage analysis in seven families
revealed a single peak on chromosome 8 (8q21.1–
8q24.4) with a logarithm of the odds score of 2.9.
However, complete sequencing of all exons in that
region in three individuals with PFAPA did not reveal
variants in the coding section of a common gene.
Whole exome sequencing of 11 individuals with
PFAPA and one unaffected individual, with filtering
for rare variants and a minor allele frequency of less
Health, Inc. All rights reserved.
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Pathogenesis of PFAPA Manthiram et al.
than 2%, revealed 14 candidate genes with variants
detected in more than 90% of individuals sequenced.
However, none of these genes were predicted to be
causal for PFAPA since variants were also sequenced
in unaffected family members, considered sequenc-
ing artifacts, or present in highly polymorphic genes.
With their genomic analysis, the authors concluded
thatPFAPA is likely a complex disease of oligogenic or
polygenic inheritance or a group of Mendelian dis-
eases with a common phenotype. Bens et al. [16]
reported one patient with PFAPA and dysmorphic
features with a de-novo chromosomal translocation
causing a microdeletion in chromosome 17 contain-
ing a gene called SPAG7, which is present in lym-
phoid tissue. However, in the largercohortofpatients
studied by Di Gioia et al., mutants in the SPAG7 gene
were not found.

Considering that PFAPA has clinical features
similar to the known monogenic periodic fever
syndromes and patients appear to have activation
of IL-1b and inflammasome-related pathways
during flares; genes related to these pathways have
been selectively studied as potential modifier genes
in patients with PFAPA [17,18]. Patients with patho-
genic mutations in monogenic periodic fever syn-
drome genes but clinical features of PFAPA have
been described. Those with clinical symptoms of
PFAPA with pathogenic variants seen in known
hereditary periodic fever syndromes more fre-
quently had symptoms outside of the oropharynx
during flares such as abdominal pain, vomiting,
diarrhea, rash, and arthralgia underscoring the
importance of obtaining genetic testing in those
with atypical features [19]. In this same study,
patients with variants of unclear significance were
not significantly different from those without var-
iants. In an Israeli study of 124 patients with a
clinical diagnosis of PFAPA and lacking features of
familial Mediterranean fever, patients who were
heterozygous for common MEFV variants (M694V,
V726A, and E148Q) had episodes that were shorter
in duration, had less regularity in timing, and were
less likely to have associated aphthous stomatitis,
suggesting that variants in MEFV may influence
the clinical phenotype of PFAPA [20]. Another group
in Japan also reported that PFAPA patients with
MEFV variants had shorter episode durations [7].
However, these findings were not replicated in
another cohort of 64 patients in Turkey [21]. There-
fore, the role of MEFV as a disease-modifying gene
in PFAPA remains unclear.

Screening for mutations in MEFV, TNFRSF1A,
MVK, NLRP3, AIM2, and NOD2/CARD15 in PFAPA
cohorts (ranging in size from eight to 124 patients)
in Israel, Turkey, Italy, Slovenia, and Switzerland
have not consistently shown a higher prevalence
 Copyright © 2017 Wolters Kluwe

1040-8711 Copyright � 2017 Wolters Kluwer Health, Inc. All rights rese
of variants in these genes in PFAPA patients
compared with controls [7,13,14

&&

,17,20–24
&

]
(Table 2). However, these studies varied in
how extensively these genes were sequenced for
polymorphisms and in the allele frequency among
healthy people of different ethnic backgrounds. A
high prevalence of NLRP3 variants were found in
PFAPA patients in Switzerland (15 out of 57
patients), and MEFV variants in a Turkish popu-
lation (42 out of 64 patients); however, this was not
seen in other populations, nor compared with
the prevalence of these variants in controls in
these studies [17,21]. Several rare variants in
inflammasome and monogenic periodic fever syn-
drome-related genes were identified by Di Gioia
et al. in 11 individuals who underwent whole
exome sequencing, but the functional significance
of these variants is unknown.

Recently, Cheung et al. [24
&

] reported that nearly
14% of patients in their cohort of 82 unrelated
PFAPA patients carried a frameshift mutation in
CARD8 (CARD-FS) in comparison with 3.2% of
healthy controls. The protein encoded by CARD8
interacts with the NLRP3 inflammasome and inhib-
its its ability to activate caspase-1. Caspase-1 is
necessary to cleave pro-IL-1b to its active form,
IL-1b. The authors found that HEK298T cells trans-
fected with the CARD-FS mutant and inflamma-
some components lacked the NLRP3 and CARD8
interaction which would presumably lead to NLRP3
activation. Patients with CARD8 mutations were
more likely to have aphthous ulcers and symptoms
between flares. However, another common poly-
morphism in the CARD8 gene (C10X) was not found
to be more common in PFAPA patients in compari-
son with healthy controls.

These recent advancements reveal that although
PFAPA clusters in families and may be inherited, the
syndrome is unlikely to be a monogenic disease in
most patients. However, inflammasome/IL-1b path-
way genes and genes involved in other periodic fever
syndromes may modulate disease manifestations in
some populations.
EFFICACY OF TONSILLECTOMY

Shortly after PFAPA was initially described, reports
of the success of tonsillectomy in achieving full
resolution of the syndrome were published. Two
randomized trials comparing tonsillectomy with
no surgical therapy demonstrated that patients in
the tonsillectomy arm were significantly more likely
to have complete resolution of episodes [25–27]. In
a subsequent larger cohort of 102 PFAPA patients
who underwent tonsillectomy, 97% had complete
resolution of episodes after an average of 4 years of
r Health, Inc. All rights reserved.
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follow-up [28]. This work has been extended in a
recent article that characterizes the role of tonsillec-
tomy in the management of patients who do not
fully meet the diagnostic criteria for PFAPA [29].
Lantto et al. followed 108 patients who had under-
gone tonsillectomy for regularly recurring fever at
their medical center in Finland from 1990 to 2007.

Fifty-eight of these 108 children met the strict
criteria for PFAPA as outlined in Table 1, whereas the
remaining 50 had only regularly recurrent fever
(lacked pharyngitis, adenitis, or aphthous stomatitis
during flares) and were defined as incomplete. In the
58 with strictly defined PFAPA, 97% (56/58) had
complete resolution of fever episodes after tonsillec-
tomy, and in the 50 patients in the incomplete
group, all had complete resolution of fever episodes
after tonsillectomy. The investigators also noted
that children with a late onset of symptoms (>5
years of age) also had an excellent response to
tonsillectomy. The authors concluded that tonsil-
lectomy was an effective treatment for patients with
both strictly defined and incomplete PFAPA.
TONSIL IMMUNOLOGY AND MICROBIOME

The curative role of tonsillectomy in PFAPA has
focused attention on understanding the patho-
physiology in patients’ tonsils that may be trigger-
ing episodes. Comparisons of cytokine transcript
expression in PFAPA tonsils and obstructive sleep
apnea/hypertrophic tonsils show that PFAPA tonsils
express less IL-4 [30]. To further dissect the role of
the tonsils, Dytrych et al. [31

&&

] performed a more
comprehensive assessment of lymphocyte subsets
by flow cytometry in both the blood and removed
tonsils of 10 patients with PFAPA and compared
them with samples obtained from patients with
obstructive sleep apnea. The PFAPA tonsils had a
lower percentage of B lymphocytes, higher percent-
age of CD8þ T lymphocytes, and higher percentage
of naı̈ve CD4þ and CD8þ T lymphocytes than
tonsils from patients with sleep apnea. In addition,
tonsils from patients with PFAPA had fewer CD4þ T-
lymphocytes with high expression of the inhibitory
molecule PD-1. T-cell chemokines levels were also
elevated in PFAPA tonsils. Immunoglobulin and T-
cell receptors did not show clonal or oligoclonal
expansion. Significantly, prior studies show that
in peripheral blood, patients with PFAPA have fewer
CD4þ and CD8þ T lymphocytes and elevated levels
of T-cell chemoattractants during flares in compari-
son with asymptomatic intervals [18].

These results suggest that naı̈ve, polyclonal T
lymphocytes accumulate in the tonsils from the per-
ipheral blood as part of the pathogenesis of PFAPA;
this accumulation may subsequently affect B-cell
r Health, Inc. All rights reserved.
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development in the tonsils as well. Many questions
remain unanswered, including what triggers the T-
cell influx into tonsils, what effect this influx has on B
lymphocytes, how it triggers inflammation in the
tonsil, what role innate immune pathways and cells
play in the pathogenesis, what feedback loops lead to
regular cyclic episodes of tonsillar inflammation, and
why these inflammatory cycles are unique to the
oropharyngeal lymphoid tissue. The efficacy of ton-
sillectomy among patients who do not strictly meet
the criteria for PFAPA and the high frequency of
presence of individuals with reducedpenetrance phe-
notypes suggest that a broader array of phenotypes
may fall under the umbrella of PFAPA. Other recent
studies also recognize the heterogeneity of the syn-
drome [8,32].

The microbiome of the tonsils has been explored
as an inflammatory stimulus or disease modulator.
Dytrych et al. [31

&&

] assessed the viral load of
Epstein–Barr virus, cytomegalovirus, human her-
pervirus-6, and adenovirus in the tonsils of patients
with PFAPA and controls by quantitative PCR. They
detected at least one of these viruses in seven of 10
PFAPA tonsils but also in seven of nine controls.
Lantto et al. [33] performed bacterial, viral, myco-
bacterial, and fungal cultures as well as PCR for
herpes viruses. In addition, they visualized biofilms
in tonsils of 31 PFAPA patients and 24 patients with
obstructive sleep apnea. They found that the tonsils
from PFAPA patients were more likely to contain
Candida albicans and develop biofilms and less likely
to contain Staphylococcus aureus and varicella-zoster
virus. This same group recently published a follow-
up study using next-generation sequencing of 16S
ribosomal RNA to more thoroughly profile the bac-
terial microbiota from tonsils removed from the
same 30 PFAPA patients and 24 controls [34

&&

].
These studies found no phylum, genera, or species
that were present in all PFAPA tonsils and absent in
all the obstructive sleep apnea patients, and no
differences in microbial populations by principal
component analysis. However, the proportions of
samples that tested positive for and the relative
abundance of particular phyla, genera, and species
differed significantly between the PFAPA cases and
sleep apnea controls. At the phylum level, PFAPA
tonsils were more likely to contain cyanobacteria
and Synergistetes than controls. At the genera level,
the mean relative abundance of streptococci was
lower and that of Prevotella was higher in the cases
than in controls. No differences in the frequency of
nasopharyngeal pathogens like Haemophilus and
Mycoplasma were found between cases and controls;
moreover, with sequencing, differences in the pres-
ence of S. aureus that were detected by culture were
not found. The lack of identification of a common
 Copyright © 2017 Wolters Kluwer 
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microbe in the tonsils of PFAPA suggests that PFAPA
is not an infectious disease although thorough
assessments of the virome and fungi have not yet
been conducted. Nevertheless, it remains unclear
whether differences in the tonsil microbiome play
a causal role in stimulating the disease, or whether
the differences are a result of repeated episodes
of inflammation.

In addition, all tonsil studies to date are limited
by the removal of tonsils only during asymptomatic
periods and comparison with tonsils from patients
with obstructive sleep apnea and/or hypertrophic
tonsils, which are inflammatory diseases as well.
Longitudinal assessments of the tonsil microbiome
over time may provide additional information.
Understanding tonsillar immunology and microen-
vironment is a valuable pathway to unraveling the
pathogenesis of PFAPA.
CONCLUSION

PFAPA has many unique aspects, including the
regularity of episode timing, the central role of
the palatine tonsils, and the familial clustering of
the disorder. Recent developments in unraveling
the pathogenesis of PFAPA have begun to elucidate
the complex genetic and immunologic mechanisms
underlying the syndrome. Genomic analyses in
larger populations may help identify common var-
iants with low penetrance, whereas large families
with severe disease may help identify rare, causal
variants that illuminate components of the mech-
anism. Future studies investigating the functional
implications of these variants should be studied in
the tonsils to help detangle the intricate web of
genetic complexity with a common phenotype.
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 CURRENT
OPINION Precision medicine in pediatric rheumatology

Joo Guan Yeoa,b,�, Chin Teck Nga,c,d,�, and Salvatore Albania,b,d

Purpose of review
Precision medicine is the tailoring of medical care to subcategories of disease. In pediatric rheumatology,
these subcategories must first be defined by their specific molecular immunological profiles, and then the
effects of growth and puberty, developmental immunological changes, and differences in treatment options
and adherence considered when designing therapeutic strategies. In the present review, we summarize the
unmet needs in pediatric rheumatology before such precision medical care can be effectively delivered to
affected patients.

Recent findings
The current clinical classification of pediatric rheumatic diseases does not provide all the information
necessary for prognostication and accurate therapeutic selection. Many studies have highlighted the
molecular differences between disease subcategories and the dissimilarities in the molecular manifestations
of the same disease between patients. Harnessing such discoveries by collaborating with various research
networks and laboratories is required to interrogate the multifactorial nature of rheumatic diseases in a
holistic manner.

Summary
Integration of big data sets generated from well defined pediatric cohorts with rheumatic diseases using
different high-dimensional technological platforms will help to elucidate the underlying disease mechanisms.
Distilling these data will be necessary for accurate disease stratification and will have a positive impact on
prognosis and treatment choice.

Keywords
disease stratification, omics, pediatrics, precision medicine, rheumatology

INTRODUCTION

The therapeutic strategies applied to pediatric
rheumatologic disorders have undergone rapid
development over the past decade because of the
implementation of a clearly defined and early, treat-
to-target approach and the increasing availability of
effective biologics. Such biologics have been based
on strategies like tumor necrosis factor-a (TNF-a)
blockade, interleukin-1 and interleukin-6 inhi-
bition, and B-cell depletion, and have permitted
patients who would otherwise be resistant to
traditional disease-modifying antirheumatic drugs
or immuno-suppressants to achieve inactive disease
or remission status. Despite these advances, hurdles
still exist in the application of precision medicine to
children with rheumatologic disorders namely
because of suboptimal diagnosis, subclassification
of disease, disease monitoring, and treatment strat-
ification. To improve clinical outcomes in this
population, the effects of growth and puberty,
developmental changes in immune cell subsets,
and the differences in treatment options and adher-
ence between pediatric and adult populations

should be considered [1]. Furthermore, exposure
to unnecessary or ineffective medications must
be reduced and an optimal therapeutic response
achieved with minimal adverse effects. By defining
each subcategory of disease by its unique immuno-
logic profile and incorporating individual genomic,
epigenetic and environmental influences, we hope
to overcome the challenges in this field and ensure
that medical care is precisely tailored to the indi-
vidual patient.
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KEY POINTS

� Precision pediatric rheumatology is the providence of
tailored medical care to subcategories of patients
based on a molecular taxonomy disease classification.

� Precision pediatric rheumatology must be independently
studied, as genetic factors, growth and puberty,
developmental changes on the immune cell subsets,
and differences in treatment adherence can affect the
clinical outcomes.

� Procedural standardization of patient identification,
data and sample collection, and integration with data
obtained from holistic, multiplatform interrogation of
biological samples will provide the best avenue to
elucidate the multifactorial mechanisms underlying
these diseases.

Precision medicine in pediatric rheumatology Yeo et al.
CURRENT SHORTFALLS IN PRECISION
PEDIATRIC RHEUMATOLOGY

As discussed, there remain numerous obstacles to
implementing precision medicine in rheumatologic
disorders in the pediatric population. Here, we
appraise the limitations to the current disease taxon-
omy system, and consider the development of a
new, comprehensive disease taxonomy that incorp-
orates genetic and biomarker data. In addition, we
discuss the necessary improvements in assessing
disease activity, and the generation of new tools
to predict treatment responses.
Disease taxonomy

Wefirst propose that a new, multidimensional taxon-
omy of disease classification is required to refine or
challenge the traditional classification of pediatric
rheumatologic diseases. The current disease classifi-
cations are based mainly on anatomical, histological,
and clinical features but they do not take into con-
sideration the underlying pathophysiological mech-
anisms that can influence therapeutic strategies [2,3].
A new taxonomy system would integrate the most
recent, clinically relevant scientific discoveries with
unique or notable biological significance, which
could then be translated into clinical practice. For
example, the influence of certain genetic polymor-
phisms in conferring susceptibility to various rheu-
matic diseases is stronger in pediatric than adult
populations. Although genetic associations with var-
ious autoimmune diseases have been long estab-
lished (such as major histocompatibility complex),
genotyping at this level currently has a limited role in
diagnosis or subcategorization of disease.

The integration of genetic data with disease
taxonomy systems may increase in the near future,
 Copyright © 2017 Wolters Kluwe
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particularly for juvenile idiopathic arthritis (JIA). A
recent genome-wide association study (GWAS) dem-
onstrated the lack of shared genetic risk factors
between systemic JIA and other subtypes of JIA,
suggesting that systemic JIA is a distinctive disease
that warrants a different classification framework
[4

&&

]. Incorporating such genetic data into disease
classification systems will increase the accuracy of
diagnoses and will circumvent the limitations of
current clinical classifications, such as for JIA
whereby the disease is currently subcategorized
based on the number of joints involved, serology,
and extra-articular manifestations [5].

Incorporation of genetic data may also be of
value in predicting disease prognosis. Studies have
demonstrated that childhood onset of systemic
lupus erythematosus (SLE) is associated with a
higher number of known SLE-susceptibility risk
alleles compared to the adult counterpart [6]. This
higher number of alleles may partially explain why
children with SLE experience a more severe and
aggressive course compared to adults and frequently
present with major organ involvement [7].
Biomarker identification

We secondly consider the urgent need for better
tools to evaluate and predict treatment responses,
namely those that consider the differences in thera-
peutic responses to the same drug between patients
with the same clinical diagnosis or disease subtype.
In day-to-day practice and in clinical trials, validated
global activity scores in pediatric rheumatic diseases
are commonly used as surrogates to measure disease
activity and response to therapy. Because of the
systemic nature of many rheumatic diseases, how-
ever, the same score with the same global disease
activity measure (such as SLE disease activity index),
either from the same patient at a different time
point or between different patients, can reflect an
entirely different clinical picture. Global disease
activity scores cannot describe the diverse under-
lying immuno-pathogenic mechanisms that occur
in different organs or in different patients. Further-
more, routinely available laboratory tests, such as
estimation of erythrocyte sedimentation rate or
C-reactive protein levels, reflect global inflam-
mation and are not disease specific. Even disease-
specific disease activity markers (such as anti-
dsDNA, complement levels in SLE) are not optimal
as they lack specificity at the organ level.

The search for biomarkers has attracted notable
interest in the research community, and although
some soluble biomarkers have been identified in
pediatric rheumatology – including heme-oxygen-
ease 1, interleukin-6, interleukin-12, interleukin-18,
r Health, Inc. All rights reserved.
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osteoprotegerin, S100 calcium-binding protein A12
(S100A12) and S100A8/A9 in systemic JIA and uri-
nary biomarkers in childhood lupus nephritis – they
have not yet been incorporated into routine day-to-
day disease management [8,9]. We propose that a
shift in focus from soluble inflammatory mediators
to the specific pathologic cellular subsets that
secrete these mediators in the various micro-
compartments (synovium, synovial fluid, lymph
node, and other specific organ sites) will likely yield
more biologically important and clinically relevant
information.

By understanding the mechanisms that explain
the differences in therapeutic response and identi-
fying the distinct differences that exist within a
common biological phenotype, we may be able to
compartmentalize patients into distinct subgroups
based on the same diagnosis, which will facilitate
therapeutic selection. For example, methotrexate is
an effective therapeutic for JIA but only 30–50%
patients have a sufficient response to this drug and
many children develop adverse effects [10,11]. This
phenomenon might be partially explained by
genetic factors that influence methotrexate metab-
olism, and candidate-gene and genome-wide phar-
macogenomic studies in JIA have identified single
nucleotide polymorphisms (SNPs) and gene regions
that are potentially associated with response or
toxicity to methotrexate [12]. Although many of
these SNPs have not been replicated in other cohorts
or shown consistency, it may explain in-part, the
heterogeneous response exhibited by patients with
JIA treated with methotrexate.

The ability to characterize the underlying patho-
genic mechanisms responsible for disease mani-
festation will also enable us to define a clear
treatment endpoint and identify an objective out-
come measure that represents a ‘normal’ immuno-
logical status and indicates successful disease
therapy. Such identifiers will also distinguish true
remission from suppressed disease activity, and help
determine when halting treatment is considered
clinically appropriate. Defining these pathogenic
mechanisms at the molecular level may even
advance the development of novel drugs, or the
repurposing of currently available biologics.
RECENT ADVANCES IN PEDIATRIC
RHEUMATOLOGY

Assessment of disease activity and prediction of
treatment response in heterogeneous pediatric dis-
eases, such as JIA and SLE, requires the imputation of
information obtained from various ‘omic’ datasets.
Thus far, molecular parameters such as genetic
profiles, gene and protein expression, and cellular
 Copyright © 2017 Wolters Kluwer 
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immune-phenotyping have not been readily trans-
lated into clinical practice. A few studies, however,
have indicated the importance of including such
molecular and genetic data in clinical management,
as will be discussed below.
Transcriptome analyses

A recent transcriptome analysis demonstrated that
downregulation of specific innate immune-response
genes in patients with systemic JIA, including those
associated with interleukin-1 and interleukin-6 sig-
naling, occurred following canakinumab treatment.
Of notable clinical importance was that the stron-
gest clinical response to canakinumab was associ-
ated with higher baseline expression of systemic JIA-
induced specific genes and marked transcriptional
reduction in multiple genes notably interleukin-1
related (interleukin-1b, interleukin-1 receptors,
interleukin-1 receptor accessory proteins) and inter-
leukin-6 at day 3. This effect was evident even prior
to the assessment of the primary clinical outcome
on day 15 [13

&

].
Innovative immunologic approaches

Using innovative immunologic approaches (based
on T-cell receptor sequencing), our center recently
identified a small but unique subset of circulating
CD4þ T cells that exhibited a phenotypic signature
representative of lymphocytes that infiltrated the
inflamed synovium in patients with JIA and rheuma-
toid arthritis. These circulating pathogenic-like
lymphocytes were pro-inflammatory, enriched in
synovial clonotypes, and most notably, expanded
in patients with JIA who did not respond to conven-
tional treatment [14]. These data identified a circu-
lating population of cells associated with active
disease and could be potentially targeted for diag-
nostic and therapeutic purposes with further studies.
Gene expression analysis

Data are emerging to suggest that there are mech-
anistic differences that underlie the systemic mani-
festation of SLE and its renal involvement (lupus
nephritis). The kidney is an important organ-
specific manifestation of SLE and a major determi-
nant of long-term outcome [15]. Although many
potential noninvasive urinary biomarkers have
been identified, including leukocytes, chemotactic
proteins involved in the recruitment of inflamma-
tory cells [monocyte chemoattractant protein 1,
C-X-C motif ligand (CXCL) 10, and CXCL16], and
products of immune cells (TNF-like weak inducer of
apoptosis), none of these can be used to definitively
Health, Inc. All rights reserved.
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distinguish between the different histopathological
classes of lupus nephritis and provide the necessary
mechanistic insight that will influence therapeutic
choice [8,16]. Of promise, however, was the identi-
fication of increased expression of platelet-derived
growth factor (PDGF) and human epidermal growth
factor receptor 2 (HER2) in mesangial cell prolifer-
ation – an important feature of lupus nephritis
[17,18]. HER-2 is of great interest in the rheumato-
logic setting because of: its specific association with
pediatric lupus nephritis, compared to PDGF that is
also associated with other causes of nephritis; inter-
feron-a-mediated upregulation; its defined mechan-
ism of enhancing mesangial cell proliferation
secondary to its repressive effects on microRNA
species (miRNAs miR-26a and miR-30b) that
regulate the cell cycle; and the availability of an
anti-HER2 monoclonal antibody (trastuzumab) cur-
rently used in an oncologic setting, which could
potentially be repurposed for lupus nephritis [18].
GENERATION OF LARGE DATASETS
USING MULTIDIMENSIONAL MOLECULAR
PLATFORMS

The highlighted limitations indicate the acute need
to identify the unique molecular differences
between individuals with the ‘same disease’ or ‘dis-
ease subtype’ in order to permit patient stratifica-
tion. In this way, diagnosis, treatment strategy, and
timing of drug withdrawal may be more accurately
considered. To achieve the goal of precision rheu-
matological care, we must move from conventional
and oligo-dimensional analyte and cell-based
research to the application of multidimensional
and high-throughput platforms that are currently
available in the different ‘omic’ workflows. For
immunomics specifically, this will involve high-
throughput platforms such as cytometry by time-
of-flight (CyTOF) to identify target cell populations
of clinical and mechanistic importance so that fluor-
escence-based flow sorting of these cells can be done
for deep RNA sequencing to identify the deranged
signaling pathway for potential therapeutic target
in addition to the use of these data for patient
stratification.
Cytometry by time-of-flight datasets in
pediatric rheumatology

CyTOF is a revolutionary technology that permits
deep interrogation of immune subsets using cell
lineage and functional markers. By this method more
than 30 biomarkers can be simultaneously detected
at the single-cell level. Our laboratory designed a
panel of 37 markers to study the T-cell compartment
 Copyright © 2017 Wolters Kluwe
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in JIA by CyTOF, using samples collected from sub-
jects recruited fora clinical trial studying theeffects of
anti-TNFa biologics. Our analysis identified that the
patients who experienced a disease flare within
6 months of drug discontinuation exhibited an
enrichment in pro-inflammatory, antigen-stimu-
lated T cells that were preexisting prior to the with-
drawal of therapy [19]. The phenotype composed of
CD3þCD4þ memory (CD45RA�) antigen experi-
enced (CD40Lþ, CD69þ) T cells that expressed cos-
timulatory (CD28þ, ICOSþ) and immune checkpoint
(CTLA4þ) markers and were capable of secreting high
levels of TNF-a. Intriguingly, CD3þCD4þCD25hi-
Foxp3hiCD45RA-CTLA4hiCD28þICOSþ cells were
found to be significantly upregulated within the T
regulatory cell compartment ofpatientsexperiencing
a disease flare. This effect may be indicative of an
inadequate attempt to downregulate the inflamma-
tory response [19]. These findings have identified
some of the disease-associated cellular subsets that
may be potentially used for clinical prognostica-
tion and further interrogation of the function of
these cells may elucidate the responsible cellular
pathways for therapeutic targeting. Such a holistic
approach has the potential to elucidate the patho-
logic mechanisms underlying JIA in an efficient man-
ner for the subsequent development of appropriate
therapeutics.
Integration of omic-derived datasets

Although the relative rarity of many rheumatolog-
ical diseases has presented some hurdles to the
progression of research, advances in available tech-
nological platforms have created opportunities for
collaboration between different fields of study and
has encouraged the development of analytical pipe-
lines that facilitate the interpretation of big datasets.
The data derived from individual ‘omics’ platforms
has been instrumental in enhancing our under-
standing of rheumatological diseases, but it is the
integration of these datasets in the study of well
characterized patient groups, obtained from differ-
ent geographical regions and networks, that will
provide a collective mechanistic insight into these
diseases (Fig. 1).

A distinct example of such integration was the
mapping of predicted disease susceptibility SNPs
from GWAS of different rheumatological (including
pediatric) diseases to epigenomic markers of an
active cis-regulatory element in an immune cell
and stimulation-specific manner; this provided an
insight into the effects of genetic variations on gene
expression [20]. Majority of the SNPs (60%) are
mapped to immune cell enhancers suggestive of a
gene regulatory role and this provides an initial step
r Health, Inc. All rights reserved.
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FIGURE 1. Integrative holistic translational research approach. Collaboration between different research groups that provide
clinically well defined patient cohorts coupled with good quality bio-specimens will allow deep interrogation with different
research platforms. The intersection and integration of these big datasets provides a holistic view of the underlying mechanistic
differences and evidence to influence clinical decisions.

Pediatric and heritable disorders
in the effort to establish the underlying mechanism
and causality of these genetic links to immune
regulation. Further research efforts of this nature
are now required in order to dissect the complexity
of autoimmune diseases for developing novel prog-
nostic, diagnostic, and therapeutic approaches.
CONCLUSION

We strongly propose that the Holy Grail in precision
rheumatology lies at the interface of large data sets
obtained from well characterized pediatric rheuma-
tologic cohorts, and that this integration will
provide important mechanistic insights. This integ-
ration is necessary because of the multifactorial
nature of rheumatic diseases where genetic, epige-
nomic, and environmental influences all contribute
to immune derangements. Resources must become
available to standardize and harmonize research
procedures, including sample collection and hand-
ling, data analysis, storage, and sharing such that
high-quality datasets can be generated for mean-
ingful comparison. Several best practices and guide-
lines are available for reference, including the
International Society for Biological and Environ-
mental Repositories (ISBER), Biobank Standardis-
ation and Harmonization for Research Excellence
in the European Union (BIOSHARE-EU), UK Bio-
bank, and Understanding Childhood Arthritis
Network (UCAN) [21

&

]. Furthermore, electronic
health records contain dynamic longitudinal infor-
mation on clinical parameters, routine laboratory
investigations, disease activity scores, family and
environmental history, prescribed medications,
 Copyright © 2017 Wolters Kluwer 
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and comorbidities. The innovative and precise
integration of the information contained within
these records with laboratory-derived omic datasets
is urgently needed to catalyze precision medicine in
pediatrics. By aggregating individual datasets into
big data complex algorithms, more robust infor-
mation can be provided to clinicians to facilitate
clinical decision-making and ultimately lead to
improved patient care and outcomes. The smooth
integration of healthcare records and large datasets
from the laboratories will require a concerted
effort and collaboration between various stakehold-
ers to navigate and overcome the challenges. It is
hoped that the integration of these large datasets
will provide a complete mechanistic picture of
these diseases, which will be helpful for patient
stratification.
Acknowledgements

The authors would like to thank J. Tamanini from
Insight Editing London for language editing of this
manuscript.
Financial support and sponsorship

Grant support from NMRC (NMRC/STaR/020/2013,
NMRC/MOHIAFCAT2/005/2015, MOHIAFCAT2001,
CIRg13nov032, NMRC MOHIAFCAT1-6003 and
NMRC/TA/0036/2015 Grant), Duke-NUS and BMRC
(SPF2014/005) is gratefully acknowledged.
Conflicts of interest

There are no conflicts of interest.
Health, Inc. All rights reserved.

Volume 29 � Number 5 � September 2017



Precision medicine in pediatric rheumatology Yeo et al.
REFERENCES AND RECOMMENDED
READING
Papers of particular interest, published within the annual period of review, have
been highlighted as:

& of special interest
&& of outstanding interest
1. Ardoin SP, Schanberg LE. Paediatric rheumatic disease: lessons from SLE:
children are not little adults. Nat Rev Rheumatol 2012; 8:444–445.

2. Sundel RP. Paediatric rheumatic disease: classification warfare. Nat Rev
Rheumatol 2012; 8:570–572.

3. Ferrell EG, Ponder LA, Minor LS, et al. Limitations in the classification of
childhood-onset rheumatoid arthritis. J Rheumatol 2014; 41:547–553.

4.
&&

Ombrello MJ, Arthur VL, Remmers EF, et al. Genetic architecture distin-
guishes systemic juvenile idiopathic arthritis from other forms of juvenile
idiopathic arthritis: clinical and therapeutic implications. Ann Rheum Dis
2017; 76:906–913.

This study describes a GWAS of 770 systemic JIA patients, demonstrating the
lack of shared genetic susceptibility loci with other types of JIA. This highlights the
need to reclassify systemic JIA as a separate entity from other subtypes of JIA and
the current limitation of disease subclassification.
5. Petty RE, Southwood TR, Manners P, et al. International League of Associa-

tions for Rheumatology classification of juvenile idiopathic arthritis: second
revision, Edmonton, 2001. J Rheumatol 2004; 31:390–392.

6. Webb R, Kelly JA, Somers EC, et al. Early disease onset is predicted by a
higher genetic risk for lupus and is associated with a more severe phenotype
in lupus patients. Ann Rheum Dis 2011; 70:151–156.

7. Papadimitraki ED, Isenberg DA. Childhood- and adult-onset lupus: an update
of similarities and differences. Expert Rev Clin Immunol 2009; 5:391–403.

8. Consolaro A, Varnier GC, Martini A, Ravelli A. Advances in biomarkers for
paediatric rheumatic diseases. Nat Rev Rheumatol 2015; 11:265–275.

9. Gohar F, Kessel C, Lavric M, et al. Review of biomarkers in systemic juvenile
idiopathic arthritis: helpful tools or just playing tricks? Arthritis Res Ther 2016;
18:163.

10. Giannini EH, Brewer EJ, Kuzmina N, et al. Methotrexate in resistant juvenile
rheumatoid arthritis. Results of the U.S.A.-U.S.S. R. double-blind, placebo-con-
trolled trial. The Pediatric Rheumatology Collaborative Study Group and The
Cooperative Children’s Study Group. New Engl J Med 1992; 326:1043–1049.
 Copyright © 2017 Wolters Kluwe

1040-8711 Copyright � 2017 Wolters Kluwer Health, Inc. All rights rese
11. Bulatovic M, Heijstek MW, Verkaaik M, et al. High prevalence of methotrexate
intolerance in juvenile idiopathic arthritis: development and validation of
a methotrexate intolerance severity score. Arthritis Rheum 2011; 63:
2007–2013.

12. Schmeling H, Horneff G, Benseler SM, Fritzler MJ. Pharmacogenetics: can
genes determine treatment efficacy and safety in JIA? Nat Rev Rheumatol
2014; 10:682–690.

13.
&

Brachat AH, Grom AA, Wulffraat N, et al. Early changes in gene expression
and inflammatory proteins in systemic juvenile idiopathic arthritis patients on
canakinumab therapy. Arthritis Res Ther 2017; 19:13.

This study utilizes DNA microarrays to determine the baseline gene expression
profile of systemic JIA patients prior to therapy. Even within this clinically defined
group, heterogeneity of profiles are found with some genes predictive of better
clinical response to canakinumab, highlighting the need for a better disease
subclassification tool.
14. Spreafico R, Rossetti M, van Loosdregt J, et al. A circulating reservoir of

pathogenic-like CD4þ T cells shares a genetic and phenotypic signature with
the inflamed synovial micro-environment. Ann Rheum Dis 2016; 75:
459–465.

15. Tsokos GC, Lo MS, Costa Reis P, Sullivan KE. New insights into the
immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol
2016; 12:716–730.

16. Wu H, Zeng J, Yin J, et al. Organ-specific biomarkers in lupus. Autoimmun Rev
2017; 16:391–397.

17. Matsuda M, Shikata K, Makino H, et al. Gene expression of PDGF and PDGF
receptor in various forms of glomerulonephritis. Am J Nephrol 1997; 17:
25–31.

18. Costa-Reis P, Russo PA, Zhang Z, et al. The role of microRNAs and human
epidermal growth factor receptor 2 in proliferative lupus nephritis. Arthritis
Rheumatol 2015; 67:2415–2426.

19. Leong JY, Tiong J, Yeo JG, et al. High dimensional interrogation of the T cell
immunome in polyarticular juvenile idiopathic arthritis patients. 2016 ACR/
ARHP Annual Meeting Abstr Suppl 2016; 68:3170.

20. Farh KK, Marson A, Zhu J, et al. Genetic and epigenetic fine mapping of causal
autoimmune disease variants. Nature 2015; 518:337–343.

21.
&

Yeung RS, Albani S, Feldman BM, et al. Enhancing translational research in
paediatric rheumatology through standardization. Nat Rev Rheumatol 2016;
12:684–690.

This perspective article highlights the factors for standardization and best prac-
tices to adopt to ensure reproducibility of results in collaborative research.
r Health, Inc. All rights reserved.

rved. www.co-rheumatology.com 505



 Copyright © 2017 Wolters Kluwer Health, Inc. All rights reserved.

 CURRENT
OPINION No shortcuts: new findings reinforce why nuance is

the rule in genetic autoinflammatory syndromes

Paul Tsoukasa and Scott W. Cannaa,b

Purpose of review
Practitioners dazed by the evolving concept of autoinflammation are in good company. Despite the clinical
challenges autoinflammatory patients present, their study has been fundamental to our understanding of
basic human inflammation. This review will focus on the ways in which recent discoveries in genetically
mediated autoinflammation broaden and refine the concept.

Recent findings
Major developments in pyrin inflammasome biology, defective ubiquitination, and the hyperferritinemic
syndromes will be highlighted.

Summary
We offer a brief discussion of discordance, convergence, genotype, and phenotype in autoinflammation.
Additionally, we introduce the concepts of mutation dose effect and hybrid nomenclature. Overall, we
hope to provide an update on developments in the field of autoinflammation, some conceptual tools to help
navigate the rising tide of discovery, and some encouragement that keeping up with developments in
autoinflammation is both exciting and necessary.

Keywords
autoinflammation, inflammasome, interferonopathy, ubiquitination disorders

INTRODUCTION

Autoinflammation was coined to describe illnesses
of uncontrolled organ specific and/or systemic
inflammation without an apparent infectious or
oncologic cause and lacking autoantibody or anti-
gen-specific T-cell responses [1]. Initial discoveries
largely revolved around Interleukin (IL)-1 dys-
regulation. IL-1 inhibition’s safety and efficacy
in monogenic autoinflammation have paved the
way for the study of IL-1 in gout, pericarditis,
sepsis, metabolic syndrome, and even thrombosis
[2,3,4

&

,5,6]. However, the paradigm of ‘auto-
inflammation¼ IL-1 dysregulation’ could not hold
for long, and more recent work has implicated
several other cytokines and inflammatory signal-
ing pathways.

Single gene defects induce disparate phenotypes
and mutations in different genes often converge on
classic yet complex phenotypes. It is increasingly
clear that there are no shortcuts to understanding
their diseases. Our goal is to synthesize the latest
discoveries into the existing autoinflammatory
landscape. In the interest of space, we will defer
exhaustive clinical detail to other excellent and
recent reviews [7–10].

CONCISE OVERVIEW OF GENE
MUTATIONS AND THEIR
CORRESPONDING PHENOTYPES

The following section provides a selected, gene-cen-
tric cast of characters, old and new, with relevant
clinical and mechanistic updates. Fig. 1

GENE/PROTEIN

Genes implicated in inflammasome disorders

MEFV/PYRIN

Clinical manifestations: the causative gene in the
canonical and recessive familial mediterranean
fever (FMF), which manifests as recurrent fevers,

aDepartment of Pediatric Rheumatology, Children’s Hospital of Pitts-
burgh of UPMC and bRichard King Mellon Institute for Pediatric
Research, Pittsburgh, Pennsylvania, USA

Correspondence to Scott W. Canna, Children’s Hospital of Pittsburgh of
UPMC, 8124 Rangos Research Building, 4401 Penn Ave, Pittsburgh,
PA 15224, USA. Tel: +1 412 692 9934; e-mail: scott.canna@chp.edu

Curr Opin Rheumatol 2017, 29:506–515

DOI:10.1097/BOR.0000000000000422

www.co-rheumatology.com Volume 29 � Number 5 � September 2017

REVIEW

mailto:scott.canna@chp.edu


KEY POINTS

� Update on phenotypic diversity, genetic mechanisms,
and pathway elucidation of known autoinflammatory
genes.

� Divergence, convergence, phenotype, and genotype
in autoinflammation.

� Conceptual tools to approach autoinflammatory
disease: mutation dose effect and hybrid nomenclature.

Genetic autoinflammatory syndromes Tsoukas and Canna
erysipeloid rash, arthritis, and serositis [11,12].
Masters et al. [13

&

] recently identified a dominant
syndrome of variable skin disease (acne, abscesses,
pyoderma gangrenosum, neutrophilic vasculitis)
and prolonged febrile episodes called pyrin-associ-
ated autoinflammation with neutrophilic dermato-
sis (PAAND), caused by specific, highly activating
MEFV mutations. Recent work suggests that FMF-
associated variants, occurring in heterozygosity,
may play a role in diverse inflammatory diseases
including inflammatory bowel disease (IBD), Behçet
syndrome, among others [14,15].

Mechanism: disease-associated MEFV mutations
are likely gain-of-function with a substantial gene
dose effect (with two alleles required for FMF
mutations, but only one for PAAND, see Fig. 2),
and cause increased formation of the PYRIN inflam-
masome. PYRIN is thus, like many other autoin-
flammatory genes, part of the bacterial sensing
machinery [16,17]. This may explain the selection
 Copyright © 2017 Wolters Kluwe
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for high carrier frequencies of FMF-associated MEFV
mutations [9].

NLRP3/NLRP3

Clinical manifestations: NLRP3 (also known as
NALP3 or cryopyrin) defects cause the well des-
cribed spectrum of cyropyrin-associated periodic
syndromes (CAPS), including familial cold-induced
autoinflammatory syndrome (fever/flu-like symp-
toms and urticaria), Muckle–Wells syndrome
(MWS, þ sensorineural hearing loss), and neonatal
onset multisystem inflammatory disease (NOMID),
þ aseptic meningitis, bony articular overgrowth).
The lasting and pervasive effects of IL-1 inhibition
were recently shown in NOMID, with protection/
improvement of all manifestations save bony
lesions, including central nervous system (CNS)
inflammation [18]. Additionally, anakinra may be
more effective in treating/preventing CNS disease in
comparison to canakinumab [19].

Mechanism: among the best studied in auto-
inflammation, NLRP3 responds to various cellular
stressors to induce inflammasome assembly. Gain of
function mutations (including somatic mutations)
can lead to NLRP3 inflammasome hyperactivity
and, in particular, excessive IL-1b [10].

MVK/MVK

Clinical manifestations: a spectrum from severe
metabolic deficiency to hyper-IgD syndrome
(HIDS). Most patients have early-onset fevers, lym-
phadenopathy, intestinal inflammation, vasculitic
skin changes, and arthritis/arthralgia [20,21].
r Health, Inc. All rights reserved.
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Mechanism: deficiency of the mevalonate
kinase enzyme impairs the isoprenoid pathway with
effects on cholesterol derivatives, including geranyl
groups that serve as protein post-translational modi-
fiers [22]. Recent work has shown that geranylation
is a critical part of r GTPase activation. Thus, loss-of-
function mutations in MVK impair geranylation,
decrease r-GTPase activity, and thereby increase
activity of the PYRIN inflammasome [23

&&

].

NLRC4/NLRC4

Clinical manifestations: gain-of-function NLRC4
mutations were initially described to cause an
early-onset syndrome of potentially severe pan enter-
ocolitis, life-threatening macrophage activation syn-
drome (MAS), and chronic elevation of serum IL-18
[24,25]. Subsequent reports identify a familial urtica-
rial syndrome with less severe systemic inflammation
[26,27]. More recent work has expanded the NLRC4-
associated spectrum to include NOMID-like pheno-
types [28] and in-utero onset of fulminant inflam-
mation and coagulopathy [29

&

].
Mechanism: NLRC4 mutations seem to cluster

near the ADP-binding site, suggesting this area
is important for preventing NLRC4 aggregation
and inflammasome activation [24,26–28,30–32].
NLRC4-associated MAS is associated with chronic
and profound IL-18 elevation, and IL-18 blocking
therapies may be effective [32].

NLRP1/NLRP1

Clinical manifestations: the spectrum of diseases
recently associated with NLRP1 mutations lead to
varying phenotypes: multiple self-healing palmo-
plantar carcinomas (MSCP), NLRP1-associated auto-
inflammation with arthritis and dyskeratosis and
familial keratosis lichenoides chronica (NAIAID)
[33

&&

,34
&

]. Only NAIAID presents as an autoinflam-
matory condition.

Mechanism: NLRP1 is an inflammasome-
activating cytosolic sensor of cytosolic bacterial
products like anthrax toxin. As with other syn-
dromes, the mechanisms distinguishing these
phenotypes are unknown.
INTERFERONOPATHY-ASSOCIATED
GENES

IFIH1/MDA5

Clinical manifestations: neonatal syndrome of
inflammation and encephalitis known as Aicardi-
Goutieres syndrome. Type 7, unlike other Aicardi-
Goutieres syndrome subtypes, can occur after a
period of normal development and is associated
with widely variable severity. Patients can be min-
imally symptomatic or have developmental delay/
 Copyright © 2017 Wolters Kluwer 
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regression, and imaging can identify cerebral atro-
phy, basal ganglia calcifications, and white matter
disease. Some patients present with lupus-like
findings (photosensitive vasculitic rash, urticaria,
edema), arthritis, serositis, alveolitis, and focal
glomerular sclerosis [35]. IFIH1 mutations have
also been implicated in systemic lupus erythemato-
sus pathogenesis [36] and a syndrome of early
and severe aortic/valvular calcification, dental
anomalies, and acroosteolysis: Singleton-Merten
syndrome [37].

Mechanisms: gain-of-function mutations in
IFIH1, which encodes the cytosolic RNA sensor
MDA5. Mutations increase MDA5–RNA binding,
usually of endogenous ALU retroelements [38].
ISG15/ISG15

Clinical manifestations: severe mycobacterial
sepsis following BCG vaccination or minimally
symptomatic basal ganglia calcification in unvacci-
nated children [39,40].

Mechanism: deficiency/loss-of-function muta-
tion. ISG15 is important for mycobacterial-induced
interferon (IFN)g production, but also promotes
accumulation of USP18, a potent inhibitor of
type I IFN signaling. Thus, ISG15 deficiency leads
to both impaired IFNg production and excessive
type I IFN production [40].
PSMB8 and other proteasome subunits

Clinical manifestations: homozygous, digenic, and
dominant mutation patterns were recently ident-
ified to expand the spectrum of genetic causes for a
syndrome of recurrent fevers, anemia, joint contrac-
tures, myositis, atypical neutrophilic dermatosis,
and lipodystrophy known as chronic atypical
neutrophilic dermatosis with lipodystrophy and
elevated temperature (CANDLE) or more generally
as proteasome-associated autoinflammatory syn-
dromes (PRAAS).

Mechanism: additive loss-of-function defects in
PSMA3, PSMB4, PSMB8, PSMB9, and/or POMP may
impair proteasome function, driving cell stress and
IFN production. IFN signaling puts greater demands
on proteasome function, propagating the defect
[41–43].
TMEM173/STING

Clinical manifestations: early-onset systemic
inflammation, acral vasculopathy, arthritis, myosi-
tis, and variable interstitial lung disease known
as STING-associated vasculopathy with onset in
infancy (SAVI) [44,45]. Janus kinase (JAK) inhibitors
Health, Inc. All rights reserved.
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showed preclinical promise, and case reports of
ruxolitinib (a selective JAK1/2 inhibitor) in SAVI
were promising [46

&

]. An ongoing compassionate
use study is evaluating the efficacy of JAK inhibitors
in various inflammasomopathies, including SAVI
(NCT 01724580)

Mechanism: STING links sensing of cytosolic
cyclic dinucleotides by cGAS to type I IFN induction,
and SAVI mutations cause a gain-of-function, result-
ing in increased STING activity [47].
UBIQUITINATION DEFECTS DRIVING
AUTOINFLAMMATION

TNFAIP3/A20

Clinical manifestations: A20 haploinsufficient
patients manifest with early-onset systemic inflam-
mation, and variable features including oral/genital
ulcers, uveitis, arthritis, colitis, and cutaneous mani-
festations likeerythema nodosum, pseudofolliculitis,
dermal abscesses, and pathergy [48

&&

,49]. The loss-of-
function mutation may mimic IBD and Behçet’s
syndrome, but was also reported to present similarly
to autoimmune lymphoproliferative syndrome [50].

Mechanism: A20 is an ubiquitin-modifying
enzyme essential in the negative regulation of sev-
eral important inflammatory pathways including
NF-kB signaling, NLRP3 inflammasome activation
[51], and NOD signaling [52].
RBCK1/HOIL1

Clinical manifestations: a combination of immuno-
deficiency and autoinflammation, patients with
loss-of-function mutations presented with persis-
tent systemic inflammation associated with amy-
lopectinosis and invasive pyogenic bacterial
infections [53].

Mechanism: encodes for HOIL-1, a critical piece
of the ternary linear ubiquitination chain assembly
complex necessary for normal ubiquitin transfer.
Deficiency may decrease NF-kB activity in fibroblasts,
but promote IL-1b production in myeloid cells [53].
OTULIN/OTULIN

Clinical manifestations: otulopenia was first des-
cribed as a syndrome of neonatal onset fevers with
neutrophilic dermatosis/panniculitis and failure to
thrive without any immunodeficiency [54

&&

,55].
Mechanism: OTULIN is a deubiquitinase, remov-

ing the linear polyubitiquitin chain assembled by
linear ubiquitination chain assembly complex. Loss-
of-function mutations result in OTULIN deficiency
and excessive proinflammatory cytokine release
 Copyright © 2017 Wolters Kluwe
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downstream of NF-kB, TNF, and NLRP3 pathways
[55]. This may be related to selective cleavage of
amino-terminal methionine-linked ubiquitin chains
that are resistant to disassembly by regulatory ubiq-
uitin modifiers like A20 or CTYLD [56].
UNCLASSIFIED GENES RESULTING IN
AUTOINFLAMMATION

CERC1/ADA2

Clinical manifestations: systemic vasculitis result-
ing in fevers, small-vessel vasculitis akin to polyar-
teritis nodosa, variable cutaneous manifestations
(livedo reticularis, livedo racemose, and Raynaud’s
to ulcerations and digit necrosis), and, most signifi-
cantly, early onset ischemic strokes [57,58]. Recent
data suggests that all cutaneous polyarteritis nodosa
patients should be screened for ADA2 deficiency
[59].

Mechanism: deficiency/loss-of-function muta-
tions of ADA2 may cause impaired alternative acti-
vation of the vascular macrophages necessary to
maintain endothelial cell function/homeostasis [58].
PSTPIP1/PSTPIP1

Clinical manifestations: patients have been
described to have some combination of pyogenic
arthritis, pyoderma gangrenosum, and cystic acne
conglobate (PAPA), hidradenitis suppurativa (lack-
ing arthritis, known as PASH), and seronegative
spondyloarthritis (PASS) [60–62]. Fevers are usually
not prominent (except with superinfected lesions)
and response to cytokine inhibition is variable.

Mechanism: PSTPIP1 (a.k.a., CD2BP1) is a cyto-
skeletal adaptor. The exact mechanism is unclear,
although increased inflammation of macrophages
[63] and the pyrin inflammasome [64] have been
demonstrated.
X-linked inhibitor of apoptosis/X-linked
inhibitor of apoptosis

Clinical manifestations: spectrum of manifestations
including features of autoinflammation and immu-
nodeficiency. Classically, X-linked inhibitor of apop-
tosis (XIAP) deficiency causes a hemophagocytic
lymphohistiocytosis (HLH)-like syndrome (spleno-
megaly, cytopenias, hepatitis, hyperferritinemia)
associated with EBV infection [65]. More recently,
early-onset/aggressive IBD, hepatitis, recurrent skin
infection, periodic fevers, and arthritis have been
described [66,67]. Disease may begin in utero [68

&

].
Mechanism: X-linked deficiency, a loss-of-func-

tion mutation, causes an NF-kB induced increase in
r Health, Inc. All rights reserved.
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apoptosis, necroptosis, and inflammasome activity
[69], as well as decreased NOD2 signaling (akin to
NOD2-associated Crohn’s disease) [70].
PRF1, UNC13D, and other genes associated
with impaired cytotoxic granules

Clinical manifestations: familial HLH is a well
described, typically infantile-onset, life-threatening
hyperferritinemic syndrome, often triggered by a
viral infection.

Mechanism: though complete deficiency/loss
of function of cytotoxicity-associated proteins has
been well described to cause familial HLH, a causative
role for heterozygous mutations has emerged
as contributory in various conditions including
systemic juvenile idiopathic arthritis and fulminant
influenza sepsis [71]. Such partial cytotoxic defects
may prolong immune synapse time and enable exces-
sive cytokine production by cytotoxic cells [72].
Patients bearing digenic defects in cytotoxic genes
have also been discovered to develop HLH [73].
LYN/LYN

Clinical manifestations: recent data identify a syn-
drome of fever and neutrophilic vasculitis associated
with B-cell abnormalities, coined LYN-associated
autoinflammatory disease [74].

Mechanism: a very specific heterozygous gain-
of-function mutation in the LYN tyrosine kinase
may result in context-dependent alterations in sig-
naling [75].
TRNT1/TRNT1

Clinical manifestations: TRNT1 deficiency can
induce periodic fevers, congenital sideroblastic ane-
mia, B-cell immunodeficiency, and developmental
delay (or sideroblastic anemia, immunodeficiency,
fevers, and developmental delay, SIFD) [76].
Recently, a hypomorphic TRNT1 variant was associ-
ated with retinitis pigmentosa [77].

Mechanism: deficiency/loss-of-function muta-
tion of TRNT1, an RNA polymerase critical for
maturation of transfer RNA, may result in cellular
stress [78].
INSIGHTS AND CONCEPTUAL
FRAMEWORKS INSPIRED BY RECENT
DEVELOPMENTS

Convergent phenotypes, many gene

In this section, we focus on the convergence of
multiple genetic defects on the classical autoinflam-
matory phenotypes of urticarial skin rash, IBD, and
 Copyright © 2017 Wolters Kluwer 
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hyperinflammation. Though the clinical manifes-
tations may be indistinguishable at the bedside,
they often result from discrete pathogenic mechan-
isms and often require different treatments.
Urticaria (NLRP3, NLRP12, PLCG2, NLRC4)

Multiple autoinflammatory diseases share the com-
mon characteristic of urticaria. Histologically, the
urticaria of an acute allergic reaction is typically
characterized by edema and mild eosinophilia.
However, in all three CAPS syndromes, it consists
of mature neutrophils [79]. Mutations in NLRP12
and PLCG2 also cause cold-induced urticaria,
although the histology of these disorders is undo-
cumented [80–82]. By contrast, two large kindreds
bearing NLRC4 mutations were characterized by
recurrent episodes of urticaria found to bear a lym-
phohistiocytic infiltrate [27]. Even though patients
with NLRC4-associated urticaria do not appear to
develop MAS, the cells in their skin are more charac-
teristic of the infiltrate seen in MAS [32]. Recurrent
fever associated with urticaria requires detailed
investigation as it is attributable to multiple genetic
defects.
Inflammatory bowel disease (XIAP, PLCG2,
MEFV, NLRC4, TNFAIP3)

Monogenic early-onset IBD has been associated with
defects in innate, adaptive, and barrier immunity
[83]. Identification of a genetic cause often has
significant therapeutic implications, in particular
allogeneic bone marrow transplantation. In
addition to defects in IL-10 signaling and regulatory
T-cell differentiation, several autoinflammatory
genes have been recently implicated. For many
genes, IBD may be a ‘moonlighting’ phenotype,
including XIAP deficiency [66,84], MVK deficiency
[85,86], PLCg2 mutations [87], and even MEFV
mutations [88]. NLRC4 mutations associated with
MAS also cause a variable, but potentially life-threat-
ening, enterocolitis that may begin in utero but
appears not to extend beyond early childhood
[24,25,29

&

]. Finally, although the more common
clinical findings of Behçet’s syndrome and A20 hap-
loinsufficient patients include mucocutaneous
ulceration, a portion of patients experience enter-
ocolitis [48

&&

,89,90].
Hyperinflammation/hyperferritinemia (PRF1,
UNC13D, STX11, STXBP2, RAB27A, LYST,
XIAP, SH2D1A, NLRC4)

Rather than specific diagnoses, researchers are
beginning to consider HLH and MAS as descriptions
Health, Inc. All rights reserved.
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of a hyperinflammatory systemic inflammatory
response. A variety of genes associated with familial
forms of HLH converge on a pathway of impaired
cytotoxic granule function. These include PRF1,
UNC13D, STX11, STXBP2, RAB27A, LYST, among
others. Other genes not clearly associated with gran-
ule defects can manifest similarly. Deficiency of
XIAP or SAP (gene SH2D1A) canonically manifests
as an EBV-associated HLH-like syndrome [91].
XIAP deficiency, is not associated with cytotoxic
impairment. Similarly, the MAS-associated NLRC4
mutations can drive a potentially fatal hyperferriti-
nemic syndrome associated with chronic and
extreme elevation of IL-18 but normal cytotoxicity
[24,25,32].
SINGLE GENES WITH EXPANSIVE
PHENOTYPES

Conversely, mutations within a lone gene can mani-
fest in an array of clinical features. Below are a few
examples of genes implicated in driving different
autoinflammatory diseases.

NLRP3: Initially, three seemingly disparate syn-
dromes were all associated with inflammasome
activing, gain-of-function mutations in NLRP3.
Now, they constitute the spectrum known as CAPS.
To date, almost 200 mutations in the NLRP3 gene
have been documented. Some mutations result in
milder phenotypes (R260W) compared with others
that are more severe (T348M) [92,93]. Recent find-
ings suggest that NLRP3 mutations with incomplete
penetrance promote autoinflammation atypical for
CAPS, both phenotypically and in response to IL-1
inhibition [94,95].

MEFV: Implicated as the causative gene in FMF
[11,12], only recently have we begun to understand
that, akin to CAPS mutations, FMF-associated pyrin
mutations are gain-of-function inflammasome
inducers [96]. Greater than 300 documented gene
variants in MEFV have been described, and of these
only a few are canonically associated with FMF.
Though FMF is typically inherited in an autosomal
recessive pattern, heterozygous FMF has been
reported [97]. Recent work by Masters et al. also
defined a novel monoallelic pyrin-associated
inflammasomopathy called PAAND [13

&

]. Ordina-
rily, pyrin is prevented from oligomerizing because
it is bound by an inhibitor called 14–3–3. Whereas
FMF mutations likely decrease the threshold
of stimulus required for pyrin inflammasome
activation, PAAND mutations completely disrupt
14–3–3 binding and likely result in a much lower
threshold of activation [13

&

]. PAAND differs from
FMF in that it is characterized by long-lasting recur-
rent fevers associated with neutrophilic dermatosis,
 Copyright © 2017 Wolters Kluwe
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in the absence of serositis and/or amyloidosis. It is,
nonetheless, partially colchicine responsive. Thus,
FMF and PAAND are two distinct (but similar)
clinical entities resulting from different degrees of
hyperactivation of the same protein.

In addition to the discovery of PAAND, recent
insights into pyrin inflammasome activation
shed light on the unique efficacy of colchicine in
FMF and the pathogenesis of HIDS. Colchicine
likely prevents r-GTPase inactivation at the level
of the cytoskeleton, thereby preventing the pre-
dominant trigger of pyrin inflammasome assembly
in FMF [23

&&

]. By contrast, HIDS mutations result
in defective geranylation of r GTPases themselves,
rendering them less active regardless of upstream
cytoskeletal stimuli. The suggested pathway also
helps expand the role of MEFV. Mutations in
B30.2/SPRY domain causing FMF are refractory to
colchicine and therefore they may play a role
in assembly post-dephosphorylation [23

&&

,96].
Additionally, FMF mutations may activate pyrin
inflammasomes independently of microtubules
[23

&&

] [98].
NLRP1 and PSTPIP1: variable phenotypes in

NLRP1 and PSTPIP1-mediated patients are described
above.

NLCR4: Though the initial descriptions were
made in 2014, already the gamut of NLRC4-associ-
ated autoinflammation runs from mild urticarial to
in-utero catastrophe. Clearly, some patients with
activating NLRC4 mutations develop early-onset
enterocolitis and recurrent, life-threatening MAS
[24,25,29

&

], but other more classical autoinflamma-
tory phenotypes have also been associated with
NLRC4 hyperactivity. A familial urticaria has been
described, potentially with a low incidence of enter-
ocolitis [26,27], as well as a NOMID-like state with
CNS inflammation [28]. Phenotypes differ even in
kin with identical mutations [24,26]. Response to
treatment varies as well; some patients requiring
minimal therapy [27], others with variable
responses to IL-1 inhibition, and some refractory
to multiple modalities that may benefit from inhi-
bition of IL-18 [32]. Although pathogenic NLRC4
mutations all seem to cluster near the nucleotide-
binding pocket, and some areas track with disease
(amino acids 337–341 and MAS, 443–445 and urti-
caria), there are not yet functional correlates to
these observations.

XIAP: XIAP deficiency is now known to cause a
remarkable diversity of inflammatory phenotypes,
spanning the distinction between immunodefi-
ciency and autoinflammation. Deficiency of XIAP
clearly drives an X-linked HLH-like syndrome
particularly in response to EBV [65,91]. However,
expanded genetic diagnostics have uncovered XIAP
r Health, Inc. All rights reserved.
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deficiency as a cause of early onset IBD or Mendelian
IBD [66,84,99]. Other investigators have associated
recurrent skin abscesses, periodic fevers, and arthri-
tis [67]. There are some similarities between NLRC4-
associated MAS and XIAP deficiency: both can
induce severe early-onset IBD and recurrent MAS/
HLH flares, both have been associated with in-utero
autoinflammation [68

&

], and both have outsize
upregulation of IL-18 [100]. Consistent with its
confusing spectrum of disease, the mechanisms by
which XIAP causes disease include abnormalities in
cell death, NOD2 signaling, and inflammasome
activation [69].
COMPLEX GENETICS AND THE MUTATION
DOSE EFFECT

Mosaicism: Mosaicism refers to mutation(s) in
only a subset of an individual’s cells. With the
progress of deep sequencing, it is likely that we will
discover more mosaic mechanisms of genetic patho-
genesis. Mosaicism may explain the later onset of
classically autoinflammatory symptoms, particu-
larly if the mutation confers a survival or prolifer-
ation benefit [101,102]. Mosaicism of NLRP3 has
been best described in ‘mutation-negative’ CAPS
[103–105], but has more recently been associated
with Schnitzler syndrome [102]. The discovery of
gonosomal mosaicism is important for genetic
counseling in both symptomatic Muckle–Wells
syndrome and asymptomatic parents [106].
Pediatric granulomatous arthritis can be caused by
somatic [107] and gonosomal mosaicism [108] of
NOD2. Similarly, somatic NLRC4 mutations have
caused both a NOMID-like phenotype and in-utero
fatal hyperinflammation [28,29

&

]. Importantly,
these are all examples of somatic gain-of-function
mutations in inflammasome activators. This
 Copyright © 2017 Wolters Kluwer 
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may be related to the ability of inflammasomes to
‘jump’ between cells and thereby propagate inflam-
mation from a mutant to a nonmutant macrophage
[109].

Digenic Inheritance: In addition to the
multigenic mechanisms that likely contribute to
diseases like sJIA and Behçet’s, digenic modes of
inheritance have been demonstrated. Such mech-
anisms may account for variable disease penetrance
or earlier/more severe disease than might be
expected with either mutation alone [110]. Additive
or synergistic mutational combinations, including
NLRP3, MEFV, and TNFRSF1A, can lead to FMF-like
phenotypes [111]. Recurrent fever and chronic
aseptic meningitis was thought to be because of
the combined effects of TNFRSF1A and MEFV
mutations [112]. Similarly, monoallelic mutations
in different proteasome subunits (in addition to
PSMB8) have been shown to drive PRAAS/CANDLE
like disease [43]. Digenic mechanisms of cytotoxic
dysfunction have also been described in some
familial HLH patients, with synergistic heterozygous
mutations in complementary cytotoxic granule-
associated pathways (e.g., PRF1 and UNC13D)
[73].

Mutation dose: We do our best to characterize
each mutation as gain or loss-of-function. However,
we can now appreciate that each mutation may be
associated with a specific pathogenic potency.
Recent developments as described above and
illustrated below, highlight that differences in the
potency of a mutation may matter as much as the
gene affected. Thus, on a per allele basis, phenotype
can vary drastically with the potency of a given
mutation (Fig. 2). Consistent with this idea, the
mutation dose effect is a concept that may help in
understanding several new genetic observations of
biologic and clinical importance.
Health, Inc. All rights reserved.
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CONCLUSION

Few fields have witnessed such a dramatic, patient-
driven sequence of rapid discoveries. Autoinflam-
matory patients do not simply illustrate estab-
lished pathways. Instead, the process of linking
patient mutations, clinical phenotypes, mechanistic
insights, and often responses to treatment, has been
critical to defining basic inflammatory pathways.
The way forward is equal parts daunting and excit-
ing. Clinicians must expand our perspectives to
include an increasing number of genes and path-
ways, how specific mutations impair function, and
how multiple mutations may interact.

These new findings also highlight a looming
quandary of nomenclature. Some diseases with
multiple genetic causes are still identified by phe-
notype (e.g., IBD, MAS/HLH), although others
with varying phenotypes are identified by a specific
gene (e.g., CAPS and PRAAS). Though the rationale
for choosing has been largely historical to date, our
opinion is that gene centric or hybrid (e.g., NLRC4-
MAS vs NLRC4-urticaria) approaches are preferable.

The pantheon of monogenic autoinflammatory
diseases will continue to grow, adding genes not
previously associated with autoinflammation as
well as nuance and depth to old favorites. Centola
et al.’s [1] prophecy 20 years ago resonates more than
ever; ‘the molecular characterization of the periodic
fever genes should provide important new insights
into the regulation of inflammation in general.’ It
is both our privilege and responsibility to further
that goal.
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 CURRENT
OPINION The catastrophic antiphospholipid syndrome

in children

Ellen J.L. Go and Kathleen M. O’Neil

Purpose of review
To review the difficult syndrome of catastrophic antiphospholipid syndrome, emphasizing new
developments in the diagnosis, pathogenesis and treatment.

Recent findings
Few recent publications directly address pediatric catastrophic antiphospholipid syndrome (CAPS). Most
articles are case reports or are data from adult and pediatric registries. The major factors contributing to
most pediatric catastrophic antiphospholipid syndrome include infection and the presence of
antiphospholipid antibodies, but complement activation also is important in creating diffuse thrombosis in
the microcirculation. Treatment of the acute emergency requires anticoagulation, suppression of the
hyperinflammatory state and elimination of the triggering infection. Inhibition of complement activation
appears to improve outcome in limited studies, and suppression of antiphospholipid antibody formation
may be important in long-term management.

Summary
CAPS, an antibody-mediated diffuse thrombotic disease of microvasculature, is rare in childhood but has
high mortality (33–50%). It requires prompt recognition and aggressive multimodality treatment, including
anticoagulation, anti-inflammatory therapy and elimination of inciting infection and pathogenic
autoantibodies.

Keywords
antiphospholipid antibody, catastrophic antiphospholipid syndrome, complement, microangiopathy,
thrombosis

INTRODUCTION

Catastrophic antiphospholipid syndrome (CAPS) is
a disease characterized by rapid development of
thromboses in several organs leading to their dys-
function and failure, in the presence of antiphos-
pholipid antibodies. The preliminary classification
criteria proposed by the International Task Force in
2003 considers patients to have definite or probable
CAPS based on the number of criteria met [1].

The classification scheme (Table 1) was vali-
dated 2 years later demonstrating good sensitivity
(90.3%), specificity (99.4%), positive predictive
value (99.4%) and negative predictive value
(91.1%) [2

&

]. Although these criteria were not
intended for diagnosis, they are often used as such
because there are no other validated criteria for
identifying this syndrome. Early recognition is
important, as CAPS has a high mortality rate of
33–50% [3,4]. Because it is rare and challenging
to diagnose, advances in understanding of patho-
genesis, diagnosis and best treatment have been
slow. Here, we will highlight points that distinguish

CAPS from typical antiphospholipid syndrome
(APS) and emphasize pediatric considerations in
management.

CAPS is a distinct entity and it differs from severe
APS that has a devastating outcome. Both con-
ditions are accompanied by antiphospholipid
(aPL) antibodies and represent the clinical con-
sequences of abnormal thrombotic control. How-
ever, they vary in the type of vessels involved; this is
perhaps the most important distinguishing feature.
Untreated APS can occur in any organ system and
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KEY POINTS

� The CAPS is a rare cause of autoantibody-mediated
diffuse microvascular thrombosis and multiorgan failure
in childhood.

� Because of high mortality (33–50%), early recognition
and aggressive treatment are required.

� Combination therapy aimed to treat underlying triggers
(often infection in children), suppress inflammation and
block life-threatening disseminated thrombosis
is needed.

� Inhibition of complement activation and suppression of
autoantibody production may prove important
treatment adjuncts.

� Collaborative clinical research is needed in this rare
but potentially devastating pediatric disorder.

FIGURE 1. Catastrophic antiphospholipid syndrome
histopathology. The histopathology of a skin biopsy from the
finger of a child with catastrophic antiphospholipid
syndrome demonstrates numerous small vessel thromboses in
capillaries without evidence of vessel wall inflammation.
Reproduced with permission from [5].
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lead to permanent disability, severe morbidity or
even death due to occlusion of single or several
medium or large blood vessels. In contrast, the
characteristic feature of CAPS is precipitous, wide-
spread microvascular occlusion. Its pathology
resembles other thrombotic microangiopathic dis-
orders like disseminated intravascular coagulation
and thrombotic thrombocytopenic purpura (Fig. 1)
[5]. Another hallmark is the evidence of the systemic
 Copyright © 2017 Wolters Kluwe

Table 1. Diagnostic criteria for catastrophic

antiphospholipid syndromea

Diagnostic criteria for CAPS

Evidence of involvement of 3 or more organs, systems and/or
tissues

Development of manifestations simultaneously or within 1 week

Laboratory confirmation of antiphospholipid antibodies (lupus
anticoagulant and/or anticardiolipin and/or anti-b2-

glycoprotein I antibodies in titers higher than 40 IU/l)

Exclusion of other diagnoses

Definite CAPS

All four criteria are present

Probable CAPS

All four criteria but only two organs, systems or tissues involved

All four criteria but laboratory confirmation at least 6 weeks
apart is not available due to early death or no testing for APL
prior to onset of CAPS

Presence of criteria 1, 2 and 4

Presence of criteria 1, 3 and 4, and the development of a third
thromboembolic event despite anticoagulation treatment more
than 1 week but less than 1 month after the second event

APL, antiphospholipid antibody; CAPS, catastrophic antiphospholipid
syndrome.
aAdapted with permission [22].

1040-8711 Copyright � 2017 Wolters Kluwer Health, Inc. All rights rese
inflammatory response syndrome (SIRS) in CAPS
which is not seen in the more typical APS.
PATHOPHYSIOLOGY

There are multiple mechanisms involved in CAPS
pathophysiology including: molecular mimicry [6],
excessive cytokine release [7

&

], thrombotic storm [8]
and endothelial activation and/or complement acti-
vation [9]. Briefly, microbial products and lipopoly-
saccharides bind to Toll-like receptor 4 (TLR 4)
generating intracellular signals that lead to NF-kB
activation and release of proinflammatory cytokines
[10]. Existing microthrombi promote an antifibri-
nolytic state through an increase in plasminogen
activator inhibitor and depression of procoagulant
factors, creating an imbalance in homeostasis of the
coagulation system favoring further thrombus for-
mation. Anti-b2-glycoprotein I (anti-b2-GPI) anti-
bodies directly induce endothelial cell activation
via the MyD88 pathway and suggest a possible
association between b2-GPI and members of the
TLR 4 family [11,12]. Complement (C) activation
products C3a and C5a, attract neutrophils, and
complement activation itself activates the coagu-
lation cascade directly through complement serine
proteases cleaving prothrombin to thrombin, and
via TLR pathways. Complement activation also
mediates release of inflammatory cytokines [13

&

].
The serine proteases belonging to the coagulation
system are able to activate the complement cascade
independently, and vice versa. It is important to
emphasize the cross-talk between these two distinct
r Health, Inc. All rights reserved.
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FIGURE 2. Interaction of the complement and coagulation cascades. This figure illustrates the interactions among serine
proteases and their inhibitors in the coagulation, complement and fibrinolytic cascades. Note that not only can complement
enzymes cleave prothrombin to thrombin and thrombin can cleave C3 to the active C5 convertase enzyme, but C4 binding
protein binds C4 and the anticoagulant, protein S. Low levels of C4 in immune complex disease make more C4BP available
to bind protein S, limiting its anticoagulant activity. Reproduced with permission from [14].

Pediatric and heritable disorders
but interconnected systems in terms of treatment
consideration for CAPS (Fig. 2, [14]).
MANIFESTATIONS

CAPS occurs in fewer than 1% of patients with APS
and juvenile CAPS is exceedingly rare, representing
only a small portion of overall CAPS patients [15].
Most of what is known about the clinical character-
istics, manifestations and prognosis of pediatric
CAPS comes from the International CAPS registry.
They have 60 cases of CAPS with onset of cata-
strophic event below 18 years of age included in
their recent descriptive analysis [16

&

]. Most were
girls (67%) and had no underlying autoimmune
disease (59%). Infection was the most common
precipitating factor across all age groups, but especi-
ally in children (54%). Malignancies are more
frequent triggers in elderly patients (33 vs. 14%,
P<0.001). CAPS was the first manifestation of
APS in 86% of pediatric patients, compared with
44% in patients 18 years and older. Extensive paren-
chymal organ involvement is predominant in CAPS
but not in APS. Renal, pulmonary, cardiac and
central nervous systems are most affected. Peri-
pheral disease was characterized by venous throm-
bosis (37 vs. 23%, P¼0.015) in children in contrast
to arterial thrombosis in elderly patients (33 vs. 16%;
P¼0.03). Defreitas et al. [17

&&

] reviewed and sum-
marized 21 published cases of pediatric CAPS from
1992 to 2014. The youngest patient was 3 months
 Copyright © 2017 Wolters Kluwer 
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old (mean age 10.5�4.8 years; median¼12 years).
Fourteen (66%) were girls and 16 (76%) had no prior
rheumatic disease. There was an infectious trigger in
13 (62%), two followed surgery, three were secon-
dary to systemic lupus erythematosus exacerbation
without infection, one had CAPS as the primary
manifestation of a malignancy and two had no
known trigger.

Among 140 children with APS included in the
Ped-APS Registry, 49% had an underlying auto-
immune disease vs. just 24% in CAPS. Thrombotic
events in the Ped-APS Registry included venous
thrombosis 61%, arterial thrombosis in 31%, small
vessel thrombosis in 5% and mixed arterial and
venous thrombosis in 3% of patients [18

&&

].
LABORATORY FINDINGS

Laboratory investigations in the CAPS registry
showed that anti-b2-GPI IgG, lupus anticoagulant
(LAC) and anticardiolipin (aCL) IgG antibodies were
the most often implicated aPL antibodies (91, 79
and 78%, respectively) in children. Adult and elderly
patients show similar aPL profiles, although LAC is
more commonly found in adults. It is important to
take note that some routinely used ELISA for anti-
b2-GPI antibody lack standardization, agreement on
cutoff values and has wide inter-assay and intra-
assay variation [19,20]. Each aPL test also differs
in sensitivity and specificity; aCL antibodies have
higher diagnostic sensitivity, whereas anti-b2-GPI
Health, Inc. All rights reserved.
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antibodies are more specific. Thus, anti-b2-GPI is
able to detect nonpathogenic antibodies and phos-
pholipid-independent anti-b2-GPI antibodies, mak-
ing them less suitable as a general diagnostic test.
Two LAC tests with different assay principles reduce
the likelihood of obtaining false-positive results
[21]. The recommended assays include the dilute
Russell viper venom test, the silica clotting time and
the lupus sensitive aPTT-based (activated Partial
Thromboplastin Time) method. LAC is more
strongly associated with thrombosis and clinically
adverse findings in APS [22]. Functional assays are
more predictive of thrombotic risk than the anti-
body assays. A major limitation of current labora-
tory diagnosis is that one cannot reliably test LAC
in patients receiving anticoagulants. Many other
phospholipid antibodies are described, but further
studies are needed to determine their significance
in CAPS.
TREATMENT

No pharmacologic agent has been approved by the
United States Food and Drug Administration for
treatment of CAPS in childhood. Early disease recog-
nition with prompt initiation of aggressive therapy
when CAPS is suspected is felt to improve patient
survival. The Task Force on CAPS recommends
anticoagulation and corticosteroids as the initial
approach [23

&

]. Treatment should be aimed at
removing the triggering factor if known, controlling
SIRS and eliminating existing thrombus.

Anticoagulation with heparins is considered the
mainstay of therapy not only for its thrombolytic
and fibrinolytic properties but also its inhibitory
effect on complement activation [24]. This is
reflected in the registry where 82% received heparin
anticoagulation either alone or combined with
other agents. Despite its widespread clinical use,
anticoagulation therapy remains a challenging
therapeutic area in pediatrics. One must consider
developmental hemostasis and that distribution,
binding, clearance and pharmacodynamic respon-
ses of antithrombotic drugs are age-dependent
[25,26]. This makes drug dosing, monitoring and
interaction in children different from adults and
ultimately affects a patient’s response to therapeutic
agents. Neonates have increased drug clearance,
reduced antithrombin levels and lesser capacity to
generate thrombin, which results in relative heparin
resistance [25]. They also have higher baseline aPTT
and this affects therapeutic monitoring of unfrac-
tionated heparin [27,28]. Weight-based dosing may
not result in equivalent anticoagulant effect in
infants and children of different ages; therefore,
diligent monitoring and dose adjustments are
 Copyright © 2017 Wolters Kluwe
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needed [29]. Acutely, heparin is the anticoagulation
treatment of choice because of its rapid onset
as well.

Long-term anticoagulation with either oral war-
farin or low-molecular-weight-heparin (LMWH)
generally depends on practical issues like ease of
administration, level of comfort and monitoring
required. Subcutaneous LMWH has lower risk of
heparin-induced thrombocytopenia than unfractio-
nated heparin, needs less monitoring and has fewer
drug interactions, but is more costly. It has been
shown that younger children may not achieve
therapeutic anticoagulation when using standard
doses of LMWH and require dose changes to achieve
the desired anti-Factor Xa range [30

&

]. This is attri-
buted to greater volume of distribution, faster drug
clearance and ontogeny. Warfarin is available as a
tablet which makes it more acceptable to children
compared with chronic LMWH that is injected.
Challenges of prescribing warfarin include difficulty
in achieving a stable drug level in relation to diet
variations, drug–drug and drug–alcohol inter-
actions, and the impact of genetic polymorphisms
(CYP2C9 and VKORC1) on warfarin dose require-
ments [31]. Risks and benefits should be carefully
considered when deciding on which anticoagula-
tion to use for maximum efficacy and least adverse
outcomes. Warfarin does not inhibit complement
activation, moreover.

Since CAPS appears to be fueled by inflam-
mation and its effects on endothelium, it is import-
ant to control inflammation to halt the process.
Glucocorticoids decrease platelet aggregation, endo-
thelial and leukocyte adhesion, production of
plasma-derived (C3, C5a, bradykinin, thrombin)
and cell-derived (cytokines, nitric oxide) inflamma-
tory mediators. Steroids also reduce transcription of
proinflammatory genes via inhibition of nuclear
translocation factor NF-kB [32]. Glucocorticoids also
upregulate anti-inflammatory processes like phago-
cytosis, chemokinesis and antioxidative processes,
all of which are beneficial in minimizing SIRS.
Seventy-six percent of 522 episodes in the CAPS
registry were treated with corticosteroids as part of
a combination regimen; however, when used alone,
glucocorticoids resulted in lower rate of recovery
and poor prognosis, and thus, this is not recom-
mended [3]. In vitro, however, steroids can directly
activate coagulation and inhibit fibrinolysis [33].
There is strong evidence of the association of glu-
cocorticoids treatment with venous thromboem-
bolic events. This should not discourage the use
of steroids when indicated, but we urge providers
to be cautious when deciding on the dose and
duration of glucocorticoid treatment. One should
decrease the dose as soon as feasible if the trigger to
r Health, Inc. All rights reserved.
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SIRS has resolved, and consider steroid-sparing anti-
inflammatory treatment early in the management
of CAPS.

Therapeutic plasma exchange (TPE) is the third
most commonly used treatment modality in CAPS.
It effectively removes pathologic antibodies,
immune complexes and cytokines [34]. TPE is a
generally well tolerated and effective option; how-
ever, the technical considerations in younger
pediatric patients (obtaining adequate vascular
access, removing large volumes of plasma and giv-
ing adequate replacement fluid) can be a challenge.
Children have a higher TPE-associated complication
rate (55% of procedures, and 82% of patients) com-
pared with adults and so they should be admitted in
specialized care centers where this is done regularly
[35,36]. Delay in starting treatment in other micro-
angiopathic disorders, like thrombotic thrombocy-
topenic pupura, is a strong predictor of poorer
outcome. In our opinion, TPE must be considered
early in CAPS.

Intravenous immunoglobulin (IVIg) modulates
complement activation, neutralizing C3a and C5a.
It inactivates immune complexes, neutralizes bind-
ing of aCL to cardiolipin, inhibits LAC activity and
decreases antibody production by inactivating B cell
clones [37–40]. High-dose IVIg at doses of 2 g/kg is
used a part of the ‘triple therapy’ in CAPS and should
be given after TPE for maximum benefit. Aside from
the mild, reversible IVIg-related acute reactions like
headache, fever and myalgia, administration is also
associated with serious thromboembolic events. The
thrombogenic potential of this agent is attributed to
blood stasis with hyperviscosity from high levels of
IgG, immune complex formation, and increased
platelet aggregation [41]. In CAPS patients, it is
advisable to give IVIg at lower concentration and
slow infusion rate. In cases of renal impairment,
sucrose-free preparations are preferred due to neph-
rotoxic potential of sucrose [42].
OTHER AGENTS

Evidence of effective use of rituximab comes from a
phase II pilot study that looked at safety of ritux-
imab in 19 adult APS (not CAPS) patients [43

&

].
The study showed that rituximab is well tolerated
in aPL-positive patients and may be effective in
controlling some but not all noncriteria manifes-
tations of APS, even though it did not change the
patient’s aPL profiles. In refractory CAPS, anti-B-cell
therapy has been tried with success in very few case
reports and case series [44,45

&

]. There were a total of
20 patients in the CAPS registry report in 2013 who
received rituximab either as a first-line drug (40%) in
combination with triple therapy or as a second-line
 Copyright © 2017 Wolters Kluwer 
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agent (60%); none of them are children. After
9.5-month median follow-up, 16 patients survived
and there were four deaths. Except for the two
patients who required at least a second course of
rituximab because of recurrent thrombosis, none
of the surviving patients developed thrombosis
after treatment. In Defreitas’s pediatric CAPS
review, all four patients who got rituximab recov-
ered. No definite conclusion regarding rituximab’s
efficacy in CAPS can be made at present. However,
with very limited therapeutic options in a life-
threatening situation, rituximab may still have a
role in the long-term management of catastrophic
APS patients.

Eculizumab is a humanized mAb against comp-
lement C5 that inhibits formation of C5a. Terminal
complement blockade prevents formation of aPL-
induced thrombosis in mouse models [46,47], and
the clinical benefit of eculizumab in patients with
APS highlights the importance of targeting comp-
lement inhibition in disease pathogenesis in CAPS.
Indeed, it has been used successfully in a limited
number of patients with CAPS, showing improve-
ment in thrombocytopenia and clinical status
[48–50,51

&&

,52]. Significantly, all patients who were
treated with eculizumab had recurrent thrombosis
despite rituximab therapy. Eculizumab is a promis-
ing alternative and should be considered earlier in
refractory CAPS as treatment and thrombus preven-
tive strategy.

There is not enough evidence for definite role of
immunosuppression in CAPS. In pediatric CAPS at
least, patients who received immune suppression
were four times more likely to survive than those
who did not, but each treatment regimen failed to
reach statistical significance because of small sample
size [17

&&

].
CONCLUSION

CAPS is one of the most dangerous and perplexing
autoantibody defined processes in childhood. Wide-
spread microcirculatory thrombosis even without
presence of detectable antiphospholipid antibodies
should raise suspicion for this diagnosis. Once CAPS
is considered, one ought to look for a potential
infectious trigger and assume this to be present at
least until proven otherwise. Medical management
must be optimized to promote maximum efficacy
and limit adverse effects and toxicity in pediatric
patients. Current consensus in therapy is to start
anticoagulation and corticosteroids with or without
plasma exchange and/or IVIg. Biologics have been
used successfully in children with refractory CAPS,
but larger studies are needed. The international
CAPS registry is an important resource in helping
Health, Inc. All rights reserved.
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us to understand the disease and monitor outcomes
of these patients. However, there is a need to have a
separate registry that focuses on learning about
cause, mechanisms, natural history, treatment and
impact on quality of life children with CAPS.
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 CURRENT
OPINION Update on the pathogenesis and treatment

of juvenile idiopathic arthritis

Gabriella Giancane, Alessandra Alongi, and Angelo Ravelli

Purpose of review
To provide an overview of recently published studies on pathogenesis and management of juvenile
idiopathic arthritis (JIA).

Recent findings
In the past year, the potential role of network analysis in the understanding of the molecular phenotype
of individual JIA subgroups has been highlighted. In addition, potential new targets for pharmacologic
interventions have been identified through the elucidation of mechanisms that modulate the function of
cells involved in the inflammatory process. There is a growing interest for the role of the gut microbiome in
disease pathogenesis, which may open the way to future therapeutic manipulations of fecal microbial
population. Recent therapeutic studies have provided important information in large patient samples on the
effectiveness and toxicity profile of biologic medications used in JIA. Concomitant administration of
methotrexate was found to increase the effectiveness of intra-articular corticosteroid therapy in children with
oligoarticular JIA.

Summary
A great deal of work is being conducted to better define the molecular phenotype of the individual subsets
of JIA and to identify potential new targets for therapeutic interventions. The results of the ongoing large-
scale international data collections will help establish the long-term safety profiles of biologic medications,
in particular the risk of malignancy.

Keywords
juvenile idiopathic arthritis, pathogenesis, treatment

INTRODUCTION

The etiologic factors and pathogenesis of juvenile
idiopathic arthritis (JIA) are still elusive. It is hypoth-
esized that a genetically susceptible individual could
develop an uncontrolled and harmful immune
response towards a self-antigen after exposure to
an unknown environmental trigger [1]. However,
pathogenetic investigations should take into account
that JIA is not a single disease, but constitutes a
heterogeneous group of illnesses with presumably
distinct genetic background and pathophysiology
[2] (Table 1).

In the last two decades, the management of JIA
has been revolutionized by the introduction of bio-
logic response modifiers, which have provided an
effective therapeutic option for the treatment of
patients who are resistant to conventional antirheu-
matic medications, namely methotrexate (MTX) or
sulfasalazine [3] (Table 2). These advances have
increased the expectation for disease control [4].
In addition, evidence is accumulating to support
the benefit of early aggressive therapy [5,6].

In this review, we provide an update of studies
published in the last year regarding pathogenesis
and treatment of JIA.

UPDATE ON PATHOGENESIS

Systems biology, conducted through the analysis of
networks of genes and proteins, is a powerful tool to
identify biological pathways of relevance to com-
plex genetic diseases. Application of network
biology can provide new insights into the molecular
heterogeneity of JIA and help to refine its classifi-
cation. Network analysis of transcriptomic datasets
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KEY POINTS

� Network analysis is a powerful new tool to define of
the molecular phenotype of individual JIA subgroups.

� There is growing interest for the pathogenetic role of
the gut microbiome and the therapeutic potential of the
manipulation of fecal microbial population.

� Large-scale therapeutic studies have confirmed the
sustained efficacy and acceptable safety profile of
biologic medications in the different subsets of JIA.

� A controlled trial suggested that the combination with
methotrexate may increase the effectiveness of intra-
articular corticosteroid therapy in children with
oligoarticular JIA.

Pediatric and heritable disorders
revealed different gene expression profiles between
children with early (<6 years) or late (�6 years)
disease onset [7

&&

]. The observed correlation
between age and variability in gene expression
 Copyright © 2017 Wolters Kluwer 

Table 1. International League of Associations for Rheumatolo

childhood

ILAR category % Definition

Systemic arthritis 4–17 Arthritis with or preceded by d
at least 3 consecutive daysþ

Evanescent nonfixed erythemat

Generalized lymph node enlar

Hepatomegaly and/or splenom

Serositis

Oligoarthrtitis 27–60 Arthritis of 1–4 joints within the

Persistent 40 �4 joints affected during the w

Extended 20 >4 joints affected after 6 mo o

Polyarthritis RF-negative 11–30 Arthritis of >4 joints within the

Polyarthritis RF-positive 2–7 Arthritis of >4 joints within the

Psoriatic arthritis 2–11 Arthritis and psoriasis or arthrit

Dactylitis

Nail abnormalities (pitting or o

Psoriasis in a first-degree relativ

Enthesitis-related arthritis 1–11 Arthritis and enthesitis or one o

Presence or history of sacroilia
lumbosacral pain

HLA-B27þ
Onset of arthritis in a male old

Acute symptomatic anterior uve

History of ankylosing spondylit
inflammatory bowel disease,
a first-degree relative

Undifferentiated arthritis 11–21 Criteria in no category or two

Exclusion criteria: a: Psoriasis or a history of psoriasis in the patient or a first-degree
age; c: ankylosing spondylitis, enthesitis-related arthritis, sacroiliitis with inflammator
of these criteria in a first-degree relative; d: presence of IgM RF positive on at least
ILAR, International League of Associations for Rheumatology; JIA, juvenile idiopathic

524 www.co-rheumatology.com
supports the proposal to incorporate the age at
disease onset among classification criteria [8,9].

The increased prevalence of autoimmunity
among first-degree relatives of patients with JIA,
recently shown by data from the CARRA Registry
[10], together with the previous reports of familial
aggregation of JIA and of monozygotic twin con-
cordance rate of 25–40% [11], suggests that genetic
factors play a major role in immunopathogenesis.
The major histocompatibility complex has long
been recognized as the most important contributor
to JIA susceptibility. A genotyping analysis from this
region revealed a strong association between human
leukocyte antigen (HLA)-DRB1 amino acid position
13 and both oligoarthritis and rheumatoid factor-
negative polyarthritis [12

&

]. The shared genetic
association of these two subtypes is in keeping with
the notion that in the current JIA classification
patients with homogeneous features are misplaced
in diverse disease categories [13,14]. The obser-
vation in the same study of mixed HLA association
Health, Inc. All rights reserved.

gy classification criteria for juvenile idiopathic arthritis in

Exclusion criteria

aily fever of at least a 2-weeks, quotidian for
one or more among:

a, b, c, d

ous rash

gement

egaly

first 6 mo a, b, c, d, e

hole disease course

f the disease

first 6 mo (RF�) a, b, c, d, e

first 6 mo (RFþ) a, b, c, e

isþat least two among: b, c, d, e

nycholysis)

e

f themþat least two among: a, d, e

c joint tenderness and/or inflammatory

er than 6 yrs

itis

is, enthesitis-related arthritis, sacroiliitis with
Reiter syndrome or acute anterior uveitis in

or more of the above categories

relative; b: Arthritis in a HLA-B27 positive male beginning after 6 years of
y bowel disease, Reiter syndrome or acute anterior uveitis or a history of one
two occasions at least 3 months apart; e: presence of systemic JIA.
arthritis; mo, months; RF, rheumatoid factor; yrs, years.
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Table 2. Main characteristics of biologic agents currently used in juvenile idiopathic arthritis

Drug Molecule Target Dosage Route Half life

Etanercept TNFRII/FcIgG1 TNF-a,b 0.8 mg/kg/week or 0.4 mg/kg twice weekly;
maximum dose: 50 mg

sc 102�30 h

Adalimumab mAb anti-TNF-a TNF-a 24 mg/m2 q2 weeks; max 40 mg sc 10–20 days

Infliximab mAb anti-TNF-a TNF-a 6–10 mg/kg q2 weeks – 2 months iv 200 h

Abatacept CTLA4-Ig CD80/86 10 mg/kg week 0,2,4, then q4 weeks iv 13.1–14.3 days

sc

Tocilizumab mAb anti IL-6R IL-6 Poly JIA >2 yrs, <30 kg 10 mg/kg q4 weeks iv 8–14 days

Poly JIA >2yrs, >30 kg 8 mg/kg q4 weeks

sJIA >2 yrs, <30 kg 12 mg/kg q2 weeks

>2 yrs, >30kg 8 mg/kg q2 weeks

Anakinra IL1-Ra IL-1a,b 1–4 mg/kg/day sc 4–6 h

Canakinumab mAb anti IL-1 IL-1b �2 years: 4 mg/kg/dose q 4 weeks sc 23–26 days

Maximum dose: 300 mg

Rituximab mAb anti CD20 B cells 375–500 mg/m2 q week x 2 doses up t
o 1 g adult dose

iv 30–400 h

IL, interleukin; iv, intravenous; Poly, polyarticular; sc, subcutaneous; Syst, systemic; tbc, tuberculosis; yrs, years.

Update on pathogenesis and treatment of JIA Giancane et al.
in juvenile psoriatic arthritis patients argues against
the assumptions that children with this condition
constitute a single homogeneous population [15

&

].
A large association study on European patients

revealed that HLA-DRB1�11 alleles, which are linked
to oligoarticular and rheumatoid factor-negative
polyarticular JIA, confer an increased risk of devel-
oping systemic JIA [16]. Note that by demonstrat-
ing that class II HLA molecules influence disease
susceptibility, this study implicates adaptive
immunity in the pathogenesis of systemic JIA. This
finding is a bit surprising, given the well established
prominent role of the innate immune system in this
disease, which has led to propose its inclusion in the
autoinflammatory disease spectrum[8]. However,
the clinical and biologic distinction between
systemic arthritis and the other JIA subtypes was
emphasized by a subsequent genome-wide associ-
ation study, which showed that systemic disease
bears a unique genetic architecture [17

&

].
Macaubas et al. [18] found impaired response

of systemic JIA monocytes to interferon (IFN). The
responsiveness was, however, restored after a
change in the medication regimen, particularly
the introduction of a biologic agent. Impaired
IFN/STAT1 signaling suggested a skewing of mono-
cytes toward a regulatory M2 phenotype, which
may underlie disease pathophysiology. Regulatory
macrophage polarization in systemic JIA was also
found to be driven by the microRNA-125a-5p. The
expression of this microRNA on monocytes was
significantly elevated in patients with active dis-
ease, ongoing systemic features and increased
 Copyright © 2017 Wolters Kluwe
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acute phase reactants [19]. Altogether, these stud-
ies draw attention to potential new targets for
therapies aimed at modulating the function of
monocytes and macrophages implicated in the
inflammatory process.

The phenotype and functionality of another
major cell compartment potentially implicated in
the pathogenesis of systemic JIA, the natural killer
(NK) cells, were analyzed by Put et al. [20]. In spite of
only minor alterations in phenotype and a globally
intact cytotoxic profile, some defects in NK immune-
regulating mechanisms were observed, including
interleukin (IL)-18-induced IFNg production and
granzyme K expression. The authors speculated that
the acquired impairment of NK-cell function may be
part of the immune dysregulation seen in systemic
JIA and constitute the link between this illness and
macrophage activation syndrome (MAS).

Restriction of peripheral blood Tregulatory
(Treg) cell repertoire and clonotypic expansions in
both blood and synovium were found by next-
generation sequencing analysis in children with
JIA, but not in a sample of healthy controls and
of children with Lyme arthritis. In addition, patients
with JIA shared an expanded portion of synovial
fluid Treg cell clonotypes that were private to JIA
and not seen in Lyme arthritis. These abnormalities
were thought to reflect an impairment in the com-
petency of the Treg cell compartment and a poten-
tially maladaptive immune response to a common
antigen [21]. Rossetti et al. [22] identified a subset of
bona fide, antigen-stimulated, and suppressive Treg
cells that expanded during active inflammation in
r Health, Inc. All rights reserved.
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JIA. These cells were found through next-generation
sequencing to be enriched in synovial clonotypes,
some of which were shared with pathogenic T effec-
tor (Teff) cells. The selective expansion of this Treg
population in active disease phases was interpreted
as an attempt to counteract the growth of patho-
genic Teff. Another study showed that blood and
synovial Tregs originate from a distinct convention-
al T-cell lineage and that their FOXP3 expression
fluctuates in response to local environment because
of interclonal and intraclonal competition [23].
Altogether, the findings of these studies delineate
a highly dynamic picture, where disruption of the
balance between the amount and activity of Treg
populations appear regulated by complex feedback
mechanisms. Thus, stabilizing FOXP3 with Treg
immunomodulatory therapies could represent a
potential therapeutic strategy for resolving chronic
inflammation.

How environmental triggers and genetic
susceptibility interact to establish and maintain
the imbalance between regulatory and effector
cells remains unclear. Increased attention has
been focused on the potential role of the gut
microbiota, and gut microbial ‘pro-arthritogenic’
profiles have been hypothesized. Intestinal dysbio-
sis has long been implicated in the pathogenesis of
spondyloarthropathies. Consistently, children
with enthesitis-related arthritis (ERA) exhibited
increased presence of Bacteroides, a bacterial
strain known for its mucine degradating properties
whose arthritogenic potential has been demon-
strated in animal models. [24]. Through taxon-
level analysis, variations in fecal microbiota com-
position and reduction of microbial richness were
seen among patients with ERA and polyarticular
JIA, in comparison with healthy individuals. The
microbiome perturbation was found to correlate
with the disease status, with an increased inter-
individual variability during active disease and a
different pattern during remission [25]. A micro-
biome profile similar to that reported in type I
diabetes and characterized by an abundance of
Bacteroidetes and low levels of Firmicutes has been
demonstrated in new-onset patients with JIA [26].
Indirect support to the pathogenic role of micro-
biome comes from the reported link between the
risk of development of JIA and environmental
factors affecting the microbiome composition,
such as delivery mode and early antibiotic use
[27]. Importantly, a growing body of evidence
suggests that the microbiome may influence the
development of the immune system, the integrity
of the intestinal mucosal barrier, and the differ-
entiation of T-cell subsets. Thus, the manipulation
of the microbiome, for example by fecal microbial
 Copyright © 2017 Wolters Kluwer 
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transplantation, may offer a perspective for future
therapeutic interventions in chronic arthritis
[28

&&

].
UPDATE ON TREATMENT

Although biologic agents are widely used in the
management of children with polyarticular JIA,
head-to-head trials comparing their efficacy and
safety are lacking. In a network meta-analysis of
published randomized controlled trials of abatacept
(ABT), adalimumab (ADA), anakinra (ANK), etaner-
cept (ETN), and tocilizumab (TCZ), Amarilyo et al.
[29

&

] did not found statistical differences in the
efficacy and safety profile among the examined
biological agents. The scrutiny of the data collected
in the German BIKER registry led to conclude that
ETN, ADB, and TCZ had similar efficacy in polyar-
ticular JIA. Compliance was highest with TCZ and
lowest with ADA [30].

Another German study examined the rates of
serious adverse events and events of special interest
under treatment with ETN and ADA in patients with
polyarticular JIA observed prospectively in national
registries. The frequency of serious adverse events,
infections and medically important infections was
significantly greater among patients treated with
both ETN and ADA than in patients treated with
MTX alone. However, the risk of malignancies was
comparable across the three therapeutic groups.
Patients receiving ETN monotherapy developed inci-
dent inflammatory bowel disease and incident uvei-
tis more frequently than patients treated with ETN in
combination with MTX or with MTX alone [31]. The
possible protective role of MTX against the develop-
ment of uveitis is in keeping with the hypothesis that
ETN may not directly cause ocular inflammation, but
the discontinuation of MTX upon successful arthritis
control may pose the patient at risk [31]. Recent data
have shown that MTX may prevent the onset of
uveitis in children with JIA [32,33]. In a subsequent
study, treatment with ETN or ADA was found to
increase the rate of serious infection only slightly,
compared to MTX. A higher level of disease activity,
measured with the clinical JADAS10, was an inde-
pendent risk factor [34

&&

].
There is increasing evidence that the individual

JIA subtypes show varying responses to therapy. A
systematic literature review revealed that children
with extended oligoarthritis were more likely to
achieve inactive disease with ETN than the other
subsets, whereas no differences across subtypes were
seen for ABT. Systemic arthritis was less responsive
to ETN than to TCZ over 12 weeks. However, longer
term response over 12 months was similar [35].
Recent evidence has been obtained that first-line
Health, Inc. All rights reserved.
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therapy with the IL-1 inhibitors ANK or canakinu-
mab (CNK) leads to better outcomes and may poten-
tially prevent progression to chronic polyarthritis in
children with systemic JIA [36

&

].
The decision about the timing of biologic treat-

ment start should take into account the cost, which
is much greater than that of MTX, and the toxicity
profile. Luca et al. [37] compared the cost and out-
comes of two strategies: MTX plus ETN as first-line
therapy (ETN-first) and MTX monotherapy followed
by ETN (ETN-second), using a cohort state-tran-
sition model of newly diagnosed patients with poly-
articular-course JIA. They found that, over a 5-year
period, first-line therapy with ETN and MTX has a
relatively high cost per quality-adjusted life years
compared to stepwise therapy starting with MTX
alone, but may be economically advantageous for
more severely affected patients.

A cooperative UK study evaluated treatment
outcomes and sought for predictor of therapeutic
response in 496 children with JIA over the first year
of ETN administration. At 12 months, 38% of the
patients reached an American College of Rheuma-
tology Pediatric (ACR Pedi) 90 response and 48%
achieved the state of minimal disease activity.
Shorter disease duration, lack of corticosteroid use
and history of uveitis were independent predictors
of achieving an ACR Pedi 90 at 1 year, whereas a
younger age and the absence of corticosteroid
administration independently predicted minimal
disease activity at 1 year [38].

In an Italian multicenter survey of 1038 patients
with JIA treated with ETN for a median of 2.5 years,
41.8–48.6% of those still taking the medication met
formal criteria for inactive disease at cross-sectional
visit, 52.4% of those discontinued from etanercept
had the medication stopped for clinical remission,
and 55.8% of patients who were lost to follow-up
were in clinical remission at last visit. ETN was
overall well tolerated, as clinically significant
adverse events were reported for 27.8% of patients
and the medication was discontinued for side effects
in 9.5% of patients. New-onset or recurrent uveitis
was the most commonly reported adverse event,
and there were two cases of malignancy: one thyroid
carcinoma and one bladder carcinoma. One patient
died for a fulminant streptococcal sepsis [39

&&

].
Thus far, most of the experience with ETN in JIA

was gained in the two subsets of extended oligoar-
thritis and rheumatoid factor-negative polyarthritis.
A recent 96-week, phase IIIb, open-label, multicen-
ter trial (CLIPPER study) demonstrated a sustained
efficacy of this medication in children with ERA and
psoriatic arthritis [40].

Yokota et al. [41
&&

] reported the results of 1 year
of post-marketing surveillance follow-up of 417
 Copyright © 2017 Wolters Kluwe
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Japanese patients with systemic arthritis treated
with TCZ. The proportion of patients with fever
and rash decreased from baseline to 52 weeks from
54.6 to 5.6% and from 43 to 5.6%, respectively. At 52
weeks, 99% of patients had normal C-reactive
protein levels. A matter of concern was that the
incidence rates of both serious adverse events and
serious infections were higher than those reported
in previous randomized clinical trials of TCZ in
systemic JIA [42,43]. The authors attributed this
phenomenon to differences in patient populations,
higher corticosteroid dosage, and exclusion of
patients with comorbidities from clinical trials.
Eight patients experienced serious infusion-related
reactions, all of which occurred between the second
and the fourth infusion. However, only three of
these patients were discontinued from treatment.
Notably, five of the six patients who were tested for
anti-TCZ antibodies were positive. Twenty-four
patients had 26 episodes of MAS, with no fatalities.

Instances of MAS in patients with systemic
arthritis were also seen under treatment with IL-1
inhibitors [44]. Grom et al. [45

&

] adjudicated as
‘probable’ or ‘possible’ the cases of macrophage
activation syndrome recorded in clinical studies of
CNK. Unexpectedly, systemic disease was well con-
trolled in the majority of CNK-treated patients at the
time of MAS. Furthermore, the difference in the
rates of probable MAS between CNK-treated patients
and placebo-treated patients was not significant.
Infection was the most common trigger of MAS
and the clinical features of the syndrome were not
modified by CNK.

In the current ‘biologic era’, intra-articular corti-
costeroids (IACs) and MTX remain cornerstone medi-
cations for the therapy of JIA [46

&

]. A multicenter
randomized trial conducted in Italy compared IACs
alone versus IACs plus MTX (administered orally) in
children with oligoarticular JIA. Although in the
intention-to-treat analysis of the primary outcome
(remission of arthritis symptoms in all injected joints
at 12 months) the difference between the two thera-
peutic groups was not significant, post-hoc multi-
variable analysis and Cox proportional hazards
model suggested that concomitant administration
of MTX might prolong and, to a lesser extent, aug-
ment the effectiveness of IAC therapy [47

&&

].
CONCLUSION

The pathogenetic studies of JIA published in past
year have provided exciting new developments in
genetic and immunologic research, which have
increased our understanding of the genetic archi-
tecture and mechanisms that drive inflammation.
The expansion of network analysis will help link the
r Health, Inc. All rights reserved.
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immunopathogenesis to the clinical phenotypes,
which should aid in the revision of classification
criteria. Some important mechanisms that modulate
the function of monocytes, macrophages, NK and
Treg cells in the blood or synovium have been
clarified, which has led to identify potential new
targets for pharmacologic interventions aimed at
resolving chronic inflammation. The demon-
strations that the composition of the gut microbiome
of children with JIA is different from that of healthy
individuals suggests its involvement indisease patho-
genesis and offers perspectives for future therapeutic
manipulation of fecal microbial population.

Recent therapeutic studies have added signifi-
cantly to the available information on the effective-
ness and toxicity profile of biologic medications used
in JIA. The published data have shown that around
half of the patients whose disease is refractory to the
conventional DMARDs, primarily MTX, may benefit
significantly from the introduction of biologics.
Overall, the rate of adverse events appears acceptable
and no signal for an increased risk of malignancy has
emerged. That the concomitant administration of
MTX was found to increase the effectiveness of IAC
therapy in children with oligoarticular JIA reminds
that these two ‘old’ therapeutic interventions main-
tain a key role in the management of JIA.
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 CURRENT
OPINION Recent advances in childhood vasculitis

Seza Ozena and Nazire Pinar Acar-Ozenb

Purpose of review
The review aims to summarize the recent findings in vasculitis that may have an impact in our
understanding or management of these diseases.

Recent findings
We are learning more about monogenic diseases that closely mimic the pediatric vasculitides. Deficiency
of adenosine deaminase 2 can present with a polyarteritis nodosa (PAN)-like picture and should be
included in the differential of all pediatric cases of PAN with a family history or in cases with early stroke,
or in cases resistant to conventional therapy. Mutations in tumor necrosis factor a-induced protein 3 results
in a disease that can present as Behçet disease called haploinsufficiency of A20. In fact, these patients
would also fulfill the existing criteria for PAN and Behçet disease, respectively. Additional advances in
Behçet disease pathogenesis come from a large genetic study of Turkish Behçet disease using data
obtained from genotyping using the Immunochip. This confirmed the HLA-B-51 locus as the most significant
association and identified new risk loci. Large Iranian and Japanese cohorts were used as replication
cohorts. Best treatment of pediatric vasculitis remains a challenge as we continue to lack controlled studies.
There are new reports in treatment on Henoch–Schönlein purpura/Immunoglobulin A vasculitis which is
one of our most frequent childhood vasculitides. Small series of new treatments for central nervous system
vasculitis and Takayasu disease will also be summarized. Diagnostic criteria have been reassessed in
pediatric Behçet disease as well as adult and childhood forms of antineutrophil cytoplasmic antibodies-
positive vasculitis.

Summary
The new pathways defined in monogenic diseases may help us better understand the pathogenesis and
may help us design more targeted therapy. Although pediatric cases are being increasingly recognized,
the relative rarity of the diseases presents an obstacle for studies. Thus, we can reach conclusive results for
their management through multicenter studies only.

Keywords
child, deficiency of adenosine deaminase 2, vasculitis

INTRODUCTION

Vasculitides are all because of inflammation of
the vessel wall but they have very different pre-
sentations depending on the target vessels. It has
been a never-ending exercise to try to understand
the reasons for this diversity; however, progress
has been rather slow except for some recent
ground-breaking discoveries that advance our
understanding of disease pathogenesis. The major
factors hindering the progress of our understand-
ing in vasculitides are their rarity and their com-
plexity with regard to immune dysfunction. On
the other hand, the last couple of years have
taught us how defects in single genes may mimic
multifactorial, more common diseases. The dis-
coveries in the relevant areas may well lead some
studies in the pathogenesis of some vasculitides
as well.

A MONOGENIC DISEASE MIMICKING
POLYARTERITIS NODOSA

Most of our diseases are complex, multifactorial
diseases with a limited level of inheritance. We
knew that systemic lupus erythematosus, a complex
rather common disease, could occur in children
with a rare monogenic disease such as Complement
1q deficiency. In fact this highlighted the import-
ance of the clearing mechanisms of the complement
pathways in systemic lupus erythematosus. The
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KEY POINTS

� Single gene defects may mimic complex vasculitic
diseases: DADA2 may mimic PAN and
haploinsufficiency of A20 may mimic Behçet disease.
Thus mutations in the relevant genes should be sought
for if the medical history suggests inherited disease.

� A retrospective study suggests the possible benefit of
steroids in mild nephritis of HSP/IgAV.

� Adult studies are providing us with evidence for the
management of rare vasculitides. Pediatricians also
need to pursue multicenter studies as our adult
colleagues do, otherwise our series are bound to be
under powered because of small numbers.

Recent advances in childhood vasculitis Ozen and Acar-Ozen
discoveries in monogenic forms of vasculitis may
inform the pathogenesis of other forms of vasculi-
tides as well. The vasculitis world has been intro-
duced to monogenic diseases in the past couple of
years. One intriguing monogenic disease is the
deficiency of adenosine deaminase 2 (DADA2) mim-
icking polyarteritis nodosa (PAN) [1,2]. This disease
is because of mutations in the gene for cat eye
syndrome chromosome region candidate 1 which
encodes the protein adenosine deaminase 2 [2]. The
lack of the protein is associated with endothelium
damage (however, the function of this protein in the
endothelial homeostasis is still unknown [3]) and is
associated with a decrease of anti-inflammatory
macrophages (M2). DADA2 is an autoinflammatory
disease characterized by raised acute phase reac-
tants, and features that may mimic PAN, including
stroke, fever, mild immunodeficiency, fluctuating
low titers of autoantibodies, and a range of other
clinical symptoms. DADA2 manifested as fever,
recurrent ischemic (mostly lacunar infarcts) or hem-
orrhagic stroke, ophthalmologic involvement
(retinal artery occlusion, optic nerve atrophy, third
cranial nerve palsy, diplopia because of medial
rectus muscle involvement), livedo racemosa, hep-
atosplenomegaly, vasculitis, PAN, low serum Immu-
noglobulin M levels [2,3]. Currently, anti-tumor
necrosis factor (TNF) therapy is the main treatment
option for DADA2. Hematopoietic stem cell trans-
plantation could be an alternative treatment for
DADA2 patients [4].

One of the main manifestations of this disease is
a PAN-like picture. We have recently learned more
about the vasculitic spectrum of the disease through
three case series: One of the single center studies
analyzed 15 patients with DADA2 [5]: The clinical
manifestations of adenosine deaminase 2 deficiency
ranged in severity from limited cutaneous involve-
ment to severe multisystemic vasculitis; one-third of
 Copyright © 2017 Wolters Kluwe
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the cases (5 of 15) were currently asymptomatic, and
required close monitoring [5]. The study high-
lighted the importance of measuring serum adeno-
sine deaminase 2 levels as well. Low levels of
adenosine deaminase 2 enzyme activity reflects
the genetic defect and is useful in establishing the
diagnosis. All the six patients reported form another
center either had a biopsy demonstrating necrotiz-
ing vasculitis or an angiogram showing aneurysms
that had been interpreted to be typical for PAN and
all met the classification criteria for childhood PAN
[6]. One of the patients diagnosed as an adult, died
because of necrotizing pneumonia and myelofibro-
sis, which has not been previously associated with
DADA2. In terms of taxonomy, we suggested that
DADA2 should be classified as a (secondary) vascu-
litis with a probable cause, because of a single gene
defect and not as PAN. Both this study and that from
the United Kingdom highlight the importance of
considering DADA2 in PAN patients with a medical
history suggestive of inherited disease or in those
who are resistant to treatment [5,6].

A review on DADA2 by Caorsi et al. [3] also
reminds us that the histopathologic features are
indistinguishable from those of systemic PAN. The
authors also remind us that the disease may be mild
in some patients and skin limited, whereas some
may present a severe, even lethal, disease with mul-
tiorgan involvement; the central nervous system
involvement is rather common with ischemic or
hemorrhagic strokes [3]. We have yet to learn about
the clinical spectrum and pathogenesis of this
monogenic disease. All three studies highlight
anti-TNF as an effective treatment, whereas severe
patients may require bone marrow transplantation.
BEHÇET DISEASE AND BEYOND

A monogenic form of vasculitis that mimics Behcet
disease has recently been identified: haploinsuffi-
ciency of A20 which is inherited autosomal domi-
nantly. Haploinsufficiency of A20 is caused by high-
penetrance heterozygous germline mutations in
TNFAIP3 (also called TNF a-induced protein 3),
which encodes the nuclear factor- kappa B (NF-kB)
regulatory protein A20 [7

&

]. A20 restricts NF-kB
signals, which subsequently leads to increased
expression of inflammatory cytokines, via its
deubiquitinase activity. Thus the loss of function
of A20 leads to increased inflammatory products.
This genetic defect results in early-onset systemic
inflammation, often mimicking Behçet disease [7

&

].
The six unrelated families reported by Zhou et al.
had features meeting the criteria for Behçet disease
with ulcers, eye disease, and gastrointestinal mani-
festations [7

&

].
r Health, Inc. All rights reserved.
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Pediatric and heritable disorders
A nice study in Behçet disease has provided some
important insights into the pathogenesis of Behçet
disease this year: An immunochip was designed to
further clarify the genetic cause of Behçet disease in
the previously studied Turkish cohort and some of
the results were replicated in Japanese and Iranian
Behçet disease patients [8

&

]. This nice study by
Takeuchi et al. has provided important insights into
the pathogenesis of Behçet disease [8

&

]. They used
the commercially available Immunochip to further
clarify the genetic cause of Behçet disease by analyz-
ing 1900 Turkish Behçet’s disease cases and 1779
controls. This study again identified HLA-B�51 as
the strongest association. And they identified new
risk loci including Interleukin 1A–Interleukin 1B,
interferon regulatory factor 8, and CCAAT/
Enhancer Binding Protein Beta–Protein Tyrosine
Phosphatase 1, in the Turkish cohort. They were
able to replicate these new risk loci in either an
Iranian or Japanese cohorts. The Interleukin 1
region showed a significant association in the
Turkish group only, which is associated with
increased Interleukin 1 b production. It was inter-
esting that other loci such as Laccase Domain Con-
taining 1 and fucosyltransferase 2 that are associated
with microbial responses were replicated in all three
groups, (these loci are shared with Crohn’s disease as
well) [8

&

]. These results implicate innate immune
response to microbes in Behçet disease susceptibility.
Thus, we may start to understand why Behçet disease
was confined to the Silk Road.

Another important study in Behçet disease has
been the new classification/diagnostic criteria for
children with Behçet disease [9]. After a prospective
8-years work and a large registry of 219 patients from
42 centers, an international group of pediatricians
have suggested the requirements to classify a child
as Behçet disease as the presence of at least three of
the following criteria: recurrent oral aphtosis (at
least three attacks per year), genital ulcers, skin
features, eye disease, neurological features, and
vasculitic features. Skin features are specified as
necrotic folliculitis, acneiform lesions, or erythema
nodosum and vasculitic features are venous throm-
bosis, arterial thrombosis, and arterial aneurysm [9].
IMMUNOGLOBULIN A VACULITIS/
HENOCH–SCHONLEIN PURPURA

Immunoglobulin A Vasculitis (IgAV) or Henoch–
Schonlein purpura (HSP) is still one of the most
common vasculitis of childhood. It is ironic that
although it is so common we still lack high evidence
data for the management of these patients. Two
studies have analyzed outcome in their IgAV
HSP patients.
 Copyright © 2017 Wolters Kluwer 
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A study attempted to define the effect of treat-
ment on outcome in Class 2 nephritis of HSP/IgAV
which describes mesangial nephritis without
crescents [10]. Between 1995 and 2015, 92 children
with class 2 HSP nephritis were collected retrospec-
tively with a median follow-up of 36 months [10]. At
the end of follow-up although no patient had a GFR
less than 60, 31% had less than 90 ml/min/1.73 m2.
In total, 25% had persistent proteinuria at the end of
the follow-up. Patients treated with steroids had a
higher probability of full remission (87 versus 68%)
although the difference was not significant. The
authors have commented that the better outcome
in patients treated with steroids favored their use in
kidney involvement of this stage [10]. This also
reflects our common practice however, prospective
controlled studies are clearly needed to decide on
the duration and dose of treatment.

A single center study of 417 patients attempted
to analyze the predictors of relapses [11]. In total,
32% of the patients had at least one relapse. The
median time interval to relapse was 1 month after
diagnosis and the median number of relapses in this
group was one. Joint and gastrointestinal manifes-
tations had a higher likelihood to relapse whereas an
infectious trigger was associated with less relapse
[11].

Pediatricians have often come across the ques-
tion of whether vaccines have triggered vasculitis.
The Brighton collaboration vasculitis working group
has done a systematic literature review to analyze
evidence and current reporting practice of vasculi-
tides including HSP/IgAV [12]. Although there were
a number of case reports suggesting possible
relation, the authors concluded that the larger
studies with higher quality studies failed to show
a causal association between vaccination and
subsequent development of vasculitis, including
HSP/IgAV [12]. However, they suggest that a stand-
ardized collection, analysis, and uniform definition
of HSP/IgAV is needed to improve data interpret-
ation for final conclusions.
RARE VASCULITIDES

Childhood primary angiitis of central nervous
system (PACNS) remains as a challenging topic as
the treatments are not based on controlled trials.
Mycophenolate mofetil was shown to be safe and
beneficial in four PACNS patients as an induction
and maintenance therapy (750–1000 mg/m2, half-
dose for the first 10–15 days followed by full-dose).
Adding mycophenolate mofetil to anticoagulants
and glucocorticoid treatment resulted in the induc-
tion and maintenance of clinical remission (median
treatment 29 months) [13].
Health, Inc. All rights reserved.
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Imaging methods are essential for PACNS diag-
nosis as it is one of the three criteria still used for
both adult and childhood PACNS diagnosis [14].
These criteria are: a newly acquired neurological
deficit (stroke, seizures, movement disorder, optic
neuritis, progressive cognitive decline, headaches,
or psychiatric manifestations including behavior
changes); angiographic and/or histologic evidence
of central nervous system vasculitis and the absence
of systemic condition associated with these find-
ings. For understanding vascular abnormalities,
magnetic resonance angiography (MRA) is the
initial method but particularly, for MRA normal
cases or for revealing posterior circulation vascular
pathology, conventional angiography should be
considered. Two recent studies emphasized the
importance of vascular imaging techniques. MRA
images reconstructed with maximum intensity pro-
jection showed progressive paucity of peripheral
vessels proposed as a reflection of the inflammation
of the peripheral vasculature [15]. This reconstruc-
tion and higher resolution methods improve the
sensitivity of MRA. Elbers et al. [16] presented their
12-month follow-up study with MRA: they high-
light that discordant vascular progression (described
as a new or worsening arterial abnormality coexist-
ing with an improved or normalized vessel) was
significantly associated with stroke recurrence. This
discordance thus seems to be another important
feature that we should follow in our patients.

One of the vasculitides that we lack high evi-
dence for management is Takayasu arteritis (TA).
There was an excellent randomized double-blind
trial for abatacept from the adult rheumatologists
for TA: 34 patients were randomized to receive
either prednisone and abatacept or prednisone
and placebo [17]. The primary endpoint was
relapse-free survival. Unfortunately, the relapse-free
survival was not significantly different at 12 months
and the median duration of remission was the same
in both groups [17].

A small single center study has addressed the
use of anti-Interleukin 6 in four children with TA:
three were resistant to conventional disease-
modifying anti-rheumatic drugs and the fourth
one had refused cyclophosphamide treatment [18].
All four patients achieved remission at 3 months
suggesting that tocilizumab may be an effective
alternative in the treatment of these patients [18]
However, the adult data warns against the risk of
relapses after cessation of treatment and thus long
follow-up studies are needed for proper recommen-
dations.

And finally, a study from our colleagues in
adult rheumatology addresses a discussion that
has been going on in the recent years, whether
 Copyright © 2017 Wolters Kluwe
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ANCA-associated vasculitis should be classified
according to the clinical features or the specificity
antineutrophil cytoplasmic antibodies (ANCA) as
proteinase 3 or myeloperoxidase related disease.
Cornec et al. [19] reviewed the evidence for ANCA
specificity to define a more homogeneous group
of disease versus using the clinical diagnosis of
microscopic polyangiitis (MPA) and granulomato-
sis with polyangiitis (GPA). The authors review the
difference in animal models (that does not exist for
PR3), the genetic associations with ANCA speci-
ficity and the association with the course of the
disease. They thus conclude that ANCA specificity
should be used rather than the clinical diagnosis
[19]. However, the jury is still out to reach final
conclusions on where to place eosinophilic GPA
and granulomatous lesions in such a classification.
On the other hand, in a pediatric series of 48
children the features of MPA and GPA (Wegener
granulomatosis) were compared and the differ-
ences were highlighted [20]. The authors found
that a younger age of onset and, gastrointestinal
manifestations and severe kidney disease are more
likely seen in children with MPA compared to
those with GPA.
CONCLUSION

The review has addressed some of the recent advan-
ces in childhood vasculitis in the last year. The
pediatric community should start multicenter col-
laborations as in juvenile idiopathic arthritis regard-
ing management and the treatment of vasculitides.
The author apologizes for important studies that
may have not been covered.
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 CURRENT
OPINION Osteoporosis in childhood

Francesco Vieruccia, Giuseppe Saggeseb, and Rolando Cimazc

Purpose of review
The aim of this review is to highlight recent findings in prevention, diagnosis, and treatment of pediatric
osteoporosis.

Recent findings
Several genes are involved in bone mass acquisition, and various monogenic bone disorders characterized
by reduced bone mineral density and increased bone fragility have been recently described. Moreover,
many chronic diseases and/or their treatment have been associated with impaired bone mass acquisition.
Pediatric osteoporosis should be adequately suspected and properly diagnosed in children at risk of
fractures. Particularly, detection of vertebral fracture allows the diagnosis regardless of densitometric
evaluation. Dual X-ray absorptiometry remains the most widely used densitometric technique in childhood,
but interpretation of results should be made with caution because of different confounding factors.
Bisphosphonates represent one of the main medical treatments of pediatric osteoporosis, and many
different protocols have been proposed. Bisphosphonates administration should be characterized by a first
phase, followed by a period of maintenance. Optimal route of administration, duration of therapy, and
long-term safety of bisphosphonates treatment require further investigation.

Summary
Careful monitoring of children at risk of fractures is essential to pose early diagnosis of osteoporosis. In
children with persistent risk factors and reduced probability of spontaneous recovery, medical treatment
with bisphosphonates should be considered.

Keywords
bisphosphonates, bone mineral density, childhood, fractures, osteoporosis

INTRODUCTION

Adult osteoporosis may be the consequence of
impaired bone mass acquisition during pediatric
age. In recent years, increasing attention has been
paid to the bone health of children and adolescents
in order to optimize bone mass accrual and avoid
detrimental effects later in life, such as the occur-
rence of osteoporotic fractures. This is particularly
true for children with genetic conditions associated
with bone fragility or those affected by chronic
diseases that negatively influence bone mass [1].
The present review will focus on recent advances
in prevention, diagnosis, and management of
pediatric osteoporosis.

ACQUISITION OF BONE MASS DURING
PEDIATRIC AGE

Bone mass acquisition during childhood culminates
in the achievement of peak bone mass (PBM), the
amount of bone mass acquired when accrual plateaus
after completion of growth and development [2

&&

].
The timing of PBM differs depending on the skeletal

site considered, sex, maturational timing, and life-
style factors. Bone status during pediatric age is a
strong predictor of bone status in young adulthood
when PBM is achieved, as bone mass tracks during
childhood and adolescence [3]. Even if up to 80% of
bone mass acquisition depends upon genetic factors
[4], environmental factors such as calcium intake,
vitamin D status, and physical activity play a pivotal
role [2

&&

,5]. The Bone Mineral Density in Childhood
study longitudinally assessed calcium intake in 1743
children, showing that calcium intake had a signifi-
cant effect on bone accrual at lumbar spine in non-
black girls [6]. In healthy Flemish children, physical
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KEY POINTS

� Primary prevention of osteoporosis starts during
childhood and adolescence, by ensuring a balanced
diet with sufficient calcium intake, sufficient vitamin D
status, and regular physical exercise.

� The term osteogenesis imperfecta, the most prevalent
form of primary osteoporosis in children, identifies a
wide spectrum of genetic conditions ranging from mild
forms to perinatally lethal ones.

� Glucocorticoid-associated osteoporosis is a frequent
complication of childhood systemic inflammatory
diseases and the most common form of
secondary osteoporosis.

� Pediatric osteoporosis can be diagnosed in presence of
at least one vertebral compression fracture not related
to local disease or high-energy trauma (regardless of
densitometry measurements), or in presence of both
reduced bone mass and a clinically significant
fracture history.

� Medical treatment with bisphosphonates should be
considered in children with osteoporosis, persistent risk
factors, and reduced probability of
spontaneous recovery.

Pediatric and heritable disorders
activity and diary consumption were positively
related to whole body bone mass, with a negative
effect of sedentary behavior [7]. A systematic review
of randomized controlled trials (RCTs) also showed
that adequate calcium intake and regular physical
activity sinergically improve bone health in children
and adolescents [8]. Body composition significantly
influences bone health during childhood, and lean
mass was demonstrated to have a positive effect on
bone mass and a larger contribution to the variance of
bone parameters than fat mass [9

&

]. Whether obesity
represents a risk factor for childhood bone status is
still debated [10], but a Mendelian randomization
study showed that adiposity is causally related to
increased bone mineral density (BMD) at all sites
except the skull, possibly reflecting positive effects
of loading on bone accrual at weight bearing sites
[11

&

]. A recent meta-analysis evaluated bone mass in
patients with eating disorders, confirming an associ-
ation between low BMD and conditions character-
ized by nutritional deprivation and altered body
composition [12

&

]. Vitamin D directly influences
bone mass accrual contributing to the regulation of
calcium–phosphorus metabolism, and indirectly
stimulating the development of muscle tissue
[13–15]. Duodenal expression of 25-hydroxy-
vitamin D3–1a-hydroxylase is higher in adolescents
than in children and adults, representing a metabolic
adaptation that promotes dietary calcium absorption
 Copyright © 2017 Wolters Kluwer 
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for the growing bone [16]. Serum 25-hydroxyvitamin
D [25(OH)D] levels correlated with some important
bone density and bone quality parameters in adoles-
cents [17

&

]. At present, the cut-off to define vitamin D
sufficiency is still debated, particularly in childhood.
A recent global consensus focused on nutritional
rickets prevention defined vitamin D sufficiency
for 25(OH)D levels more than 20 ng/ml. However,
several other consensus and guidelines that con-
sidered also pleiotropic effect of vitamin D suggested
30 ng/ml as cut-off for sufficiency [18,19

&&

].
The National Osteoporosis Foundation applied

an evidence based grading system to describe the
strength of available evidence on modifiable lifestyle
factors that may influence the acquisition of PBM.
This review reported strong evidence (grade A) for
calcium and moderate evidence (grade B) for dairy
products and vitamin D. Physical activity and exer-
cise were also found to determine important effects
on bone mass and density (grade A) and on bone
structural outcomes (grade B) [20

&&

]. Four out of eight
included RCTs provide evidence for a beneficial effect
of vitamin D supplementation on bone accrual,
mainly in subjects with vitamin D deficiency. At
present, several unanswered questions remain
(critical times during which supplementation may
be most effective, continuous or intermittent supple-
mentation, sex difference), thus vitamin D supple-
mentation to optimize bone mass acquisition should
be reserved for children at risk for deficiency.
CAUSES OF OSTEOPOROSIS IN
CHILDHOOD

Pediatric osteoporosis is usually divided in primary
and secondary forms, as reported in recent reviews
[1,21,22

&&

,23,24]. Various monogenic bone dis-
orders with reduced BMD and increased bone fra-
gility have been described [25–27,28

&

]. Osteogenesis
imperfecta is the most prevalent form of primary
osteoporosis in children, even if the exact incidence
is still unknown. The term osteogenesis imperfecta
identifies a wide spectrum of conditions ranging
from mild forms to perinatally lethal ones.
Although for three decades it has been recognized
that the majority of patients with osteogenesis
imperfecta had mutations in COL1A1 and COL1A2
genes, defects in several other genes have been
recently demonstrated to determine osteogenesis
imperfecta. At present, Online Mendelian Inheri-
tance of Man (OMIM) database has identified 17
genotypic osteogenesis imperfecta types, and it
seems plausible that new osteogenesis imperfecta-
associated genes may be identified in the near
future. To simplify this complex scenario, in 2010
the revision of nosology and classification of genetic
Health, Inc. All rights reserved.
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skeletal disorders suggested to update the original
Sillence classification defining five clinical osteo-
genesis imperfecta types (Table 1) [29,30]. Moreover,
other genetic conditions are associated with osteo-
porosis and bone fragility, clinically overlapping
osteogenesis imperfecta (Table 2). Fracture history,
clinical examination, bone and mineral biochemis-
try, X-rays (lumbar and long bones), and densito-
metric assessment allow a clinical diagnosis of
osteogenesis imperfecta that should be confirmed
with molecular analysis [31

&

].
Secondary forms of pediatric osteoporosis are

caused by detrimental effects of systemic diseases
and/or their treatment on bone mass accrual (Table
3). The impact of specific conditions on bone health
has been extensively reviewed [21,32–34]. During
the course of chronic disorders several factors may
interact to determine osteoporosis other than direct
bone detrimental effects of the disease or its treat-
ment, such as prolonged immobilization, reduced
time spent outdoor and possibly consequent vitamin
D deficiency, hypogonadism, and poor nutrition.
Inflammatory systemic diseases are characterized
by increased levels of proinflammatory cytokines
(such as tumor necrosis factor alpha, interleukin-1,
and interleukin-6) that uncouple bone remodeling
cycle, interfering with bone mass acquisition [24].
Childhood rheumatic diseases are associated with
reduced BMD and increased risk of vertebral and
nonvertebral fractures. This association is robust
for juvenile idiopathic arthritis, whereas studies on
juvenile systemic lupus erythematosus or juvenile
dermatomyositis are more limited [35

&

]. Glucocorti-
coid-associated osteoporosis is a frequent com-
plication of childhood systemic inflammatory
diseases and the most common form of secondary
osteoporosis. Glucocorticoids are physiological
required for normal bone development because of
their regulation of osteoblast differentiation, prob-
ably by Wnt/b-catenin pathway and TSC22D3 [36].
On the contrary, glucocorticoid treatment directly
alters bone remodeling increasing bone resorption
and decreasing bone formation, and indirectly affect-
ing muscle tissue. Finally, glucocorticoids affect
calcium homeostasis by increasing its urinary
excretion and reducing gastrointestinal absorption
[37]. Inhaled corticosteroids may also impact skeletal
growth and bone accrual [38

&

], particularly during
the first 1–2 years of treatment [39] and in children
exposed before 6 years of age [40].
DIAGNOSIS OF OSTEOPOROSIS IN
CHILDHOOD

In 2013, the International Society for Clinical
Densitometry (ISCD) recommended that pediatric
 Copyright © 2017 Wolters Kluwe

1040-8711 Copyright � 2017 Wolters Kluwer Health, Inc. All rights rese
osteoporosis can be diagnosed in presence of at least
one vertebral compression fracture not related to
local disease or high energy trauma (regardless of
densitometry measurements), or in presence of both
reduced bone mass [bone mineral content (BMC) or
BMD �2 Z-score, taking account for bone dimen-
sions] and a clinically significant fracture history
(�2 long bone fractures before 10 years of age or
�3 long bone fractures during the 10–19 years
period) [41,42]. To avoid unnecessary investi-
gations, fracture history assessed by questionnaire
should be confirmed evaluating medical documen-
tation [43

&

]. Dual-energy X-ray absorptiometry
(DXA) is the preferred method to asses bone mass
during pediatric age because of good reproducibility
and speed, reduced exposure to ionizing radiation,
and large availability of reference data [44]. Periph-
eral quantitative computed tomography (pQCT)
separately analyzes trabecular and cortical bone
compartments, allowing the analysis of appendicu-
lar bone geometry, density, and strength, and to
evaluate fat and muscle composition of the limbs.
However, pQCT use is still limited by the lack of
standardized scanning protocols and normative
pediatric values [45,46].

In 2016, the American Academy of Pediatrics
(AAP) updated 2013 ISCD report regarding the role
of bone densitometry in children [47

&

]. Both ISCD
and AAP recommended to perform DXA evaluation
in children with bone fragility at lumbar spine (L1–
L4) and total body less head. Indeed, skull mineral-
ization is not affected by nutritional or environmen-
tal factors such as physical exercise, and skull
fractures should not suggest osteoporosis [48

&

]. Lat-
eral distal femur scan may be performed in children
with spinal deformity or contractures [49,50]. Even
if DXA represents a valuable tool as part of a com-
prehensive skeletal assessment, at present the diag-
nosis of pediatric osteoporosis cannot be established
on the basis of densitometry criteria alone [47

&

]. The
term osteopenia or osteoporosis should not appear
in pediatric DXA reports, whereas the detection of
BMC or areal BMD Z-score�2.0 SD should be ident-
ified with the term ‘low bone mass or BMD’ [44].
DXA interpretation may be difficult, particularly in
short patients with smaller bones. The difficulty in
accounting for reduced bone size increases in chil-
dren with chronic diseases as they usually present
delayed growth and/or pubertal development. Sev-
eral body size adjustment techniques have been
developed, but at present none adequately addresses
all the potential concerns nor has been validated in
terms of incident fracture prediction [48

&

].
The assessment of lateral spine images acquired

by DXA may be used to detect vertebral fracture,
a technique named vertebral fracture assessment
r Health, Inc. All rights reserved.
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(VFA). VFA was confirmed to be a practical screening
tool for identification of vertebral fracture in chil-
dren at risk of fragility fractures [51

&

]. Despite the
advantage that VFA exposes the patient to low radi-
ation and can be performed during a routine DXA
evaluation, VFA assessment of vertebral bodies in
the mid-thoracic region is still suboptimal, particu-
larly in younger children [52].

Recently, vertebral fracture incidence rates of
4.4 per 100 person-years among 134 children with
rheumatic disorders [53] and of 8.7 per 100 person-
years among 186 children with acute lymphoblastic
leukemia have been reported [54]. One-third to one-
half of fractured patients were asymptomatic. Thus,
children at risk should be routinely assessed for
vertebral fracture, even in the absence of back pain
(see section ‘Prevention and Treatment of Osteopo-
rosis in Childhood’). Moreover, early diagnosis of
vertebral fracture is important also because mild
(grade 1) vertebral fracture independently predict
future fractures [54].

A detailed algorithm for diagnosis and treat-
ment of pediatric osteoporosis has been proposed
by Ward et al. In children with suspected bone
fragility rickets should be first excluded, and if
present calcium, phosphate, and vitamin D
deficiencies should be treated. In the absence of
underlying systemic conditions that may cause sec-
ondary osteoporosis, primary forms may be sus-
pected and eventually confirmed with molecular
analysis, starting with COL1A1 and COL1A2 [22

&&

].
PREVENTION AND TREATMENT OF
OSTEOPOROSIS IN CHILDHOOD

Primary prevention of osteoporosis starts during
childhood, ensuring a balanced diet with sufficient
calcium intake, a sufficient vitamin D status, and
regular physical exercise (possibly outdoor to
promote skin synthesis of vitamin D). This approach
is particularly important in children with chronic
conditions that negatively affect bone accrual. For
example, children treated with glucocorticoids or
anticonvulsant medication should receive at least
twice the amount of vitamin D than the dose recom-
mended for age [55]. Vitamin D supplementation up
to 2000 IU/day has been suggested in children with
rheumatic disorders treated with glucocorticoids
[56]. Adequate treatment of the underlying illness
is obviously also essential to prevent and treat osteo-
porosis; in particular, it is important to use the
lowest possible glucocorticoid dose that maintains
disease control [22

&&

].
Secondary prevention strategies are reserved for

children at high risk to identify early signs of osteo-
porosis. A baseline spine X-ray or VFA assessment
Health, Inc. All rights reserved.
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Table 3. Main causes of secondary pediatric osteoporosis

Chronic diseases

Malignancy (leukemia, lymphoma)

Rheumatologic disorders (juvenile idiopathic arthritis, systemic
lupus erythematosus, juvenile dermatomyositis, etc.)

Cystic fibrosis

Inflammatory bowel disease

Renal disease

Transplantation

Hepato-biliary diseases (cholestatic forms)

Cyanotic congenital heart disease

Thalassemia

Malabsorption syndromes, celiac disease

Epidermolysis bullosa

Neuromuscular disorders

Cerebral palsy

Rett syndrome

Duchenne muscular dystrophy, other myopathic diseases

Spina bifida

Spinal muscular atrophy

Other diseases associated with chronic immobilization

Endocrine disorders

Cushing syndrome

Growth hormone deficiency

Hyperthyroidism

Hypogonadism, anorexia nervosa, female athletes

Panhypopituitarism

Type 1 diabetes

Genetic diseases

Turner syndrome

Klinefelter syndrome

Lysinuric protein intolerance

Glycogen storage disease

Galactosemia

Gaucher disease

Iatrogenic

Glucocorticoids

Methotrexate

Cyclosporine

Heparin

Radiotherapy

GnRH agonist

Medroxyprogesterone acetate (long-term use)

Anticonvulsants (phenytoin, phenobarbital, carbamazepine)

Osteoporosis in childhood Vierucci et al.
should be offered to children treated with glucocor-
ticoids for at least 3 months, with a follow-up at 12
months and subsequently every 12–24 months if
treatment with glucocorticoids continues. Children
with neuromuscular disorders and impaired
 Copyright © 2017 Wolters Kluwe

1040-8711 Copyright � 2017 Wolters Kluwer Health, Inc. All rights rese
mobility should also receive regular spine X-ray
evaluations starting from 6 to 8 years until growth
completion [22

&&

]. In children at high risk for frac-
tures, a DXA evaluation should be performed at least
as frequently as radiography, with a minimum inter-
val of 6–12 months [22

&&

,41]. As BMD tracks during
childhood, repeated DXA scans may be useful to
identify children with a significant probability of
spontaneous recovery or those necessitating treat-
ment [24].

At present, the antiresorptive agents bisphosph-
onates represents the main medical treatment of
pediatric osteoporosis, and many different protocols
have been proposed. Mechanism of action, pharma-
cokinetics, dose, and possibly adverse effect of
bisphosphonates have been recently reviewed
[57,58]. As data on long-term efficacy and safety
of bisphosphonates are lacking, the issue regarding
when to start such treatment is still debated. In their
algorithm, Ward et al. suggested to initiate
bisphosphonates administration in subjects with
diagnosed primary or secondary osteoporosis and
low-trauma long bone or vertebral fractures. The
impact of the fractures on quality of life and lack
of potential for spontaneous recovery because of
persistent osteoporosis risk factors should also be
considered [22

&&

]. Some recent systematic reviews
and meta-analyses evaluated the effect of
bisphosphonates administration in specific forms
of pediatric osteoporosis (Table 4). Current evidence
suggests a positive effect of bisphosphonates in
increasing BMD in children with osteogenesis
imperfecta [59,60–62

&&

], but significant effect of
bisphosphonates in reducing fracture risk and
improving quality of life is still debated. Limited
evidence also suggests a positive effect of bisphosph-
onates in children with cerebral palsy [64,65

&&

] or
glucocorticoid-induced low BMD [66]. On the con-
trary, there is inconclusive evidence to recommend
bisphosphonates administration in children with
acute lymphoblastic leukemia to alter osteonecrosis
disease progression [63

&

], or with anorexia nervosa
[67].

Current recommendations suggest that
bisphosphonates administration should be charac-
terized first by a stabilization phase, usually lasting
at least 2 years, followed by a maintenance one.
Once clinical stability has been obtained (defined
as absence of new vertebral fracture in previously
normal vertebral bodies, absence of additional loss
of vertebral height at sites of previous fractures,
eventual reshaping of vertebral fracture, absence
of new nonvertebral fractures, bone and back pain,
improvement in mobility and in lumbar BMD), a
lower dose (half-dose or less) should be administered
in presence of persistent risk factor for osteoporosis
r Health, Inc. All rights reserved.
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Table 4. Systematic reviews and/or meta-analyses regarding bisphosphonates administration in children with osteoporosis

published from 2015

First author Disease
Studies

included Population

N of patients
receiving

bisphosphonates Conclusions

Rijks [59] Osteogenesis
imperfecta

10 Children 519 Treatment with oral or intravenous
bisphosphonates resulted in an increase in
BMD and seems to be safe and well
tolerated in children with osteogenesis
imperfecta.

Sinikumpu [60] Osteogenesis
imperfecta
type IIIa

10 Children 346 Bisphosphonates leaded to better life
conditions in these patients. Particularly,
bisphosphonates have revolutionized the
treatment of newborns with severe
osteogenesis imperfecta type III.

Shi [61] Osteogenesis
imperfecta

9 Children and adults 557 Bisphosphonates could increase BMD and
reduce the risk of facture in patients with
osteogenesis imperfecta. There was no
enough evidence to identify differences in
efficacy between oral and intravenous
bisphosphonates on fracture reduction.

Dwan [62&&] Osteogenesis
imperfecta

14 Children and adults 819 Current evidence, albeit limited,
demonstrates that oral or intravenous
bisphosphonates increase BMD in
children and adults with osteogenesis
imperfecta. Studies included do not show
if bisphosphonates conclusively improve
clinical status (pain, growth, and
functional mobility).

Amin [63&] Osteonecrosis in
ALL

5 Children 64 There is currently no evidence that
bisphosphonates alter osteonecrosis
disease progression in childhood ALL.

Kim [64] Cerebral palsy 4 Children 64 Bisphosphonates have a significant effect on
improving BMD in children with cerebral
palsy. Further standardization of treatment
protocols including treatment dosage and
duration needs to be established.

Ozel [65&&] Cerebral palsya 5 Children b Bisphosphonates are probably effective in
increasing BMD in children with cerebral
palsy.

Jayasena [66] Glucocorticoid-
induced low
BMDa

4 Children 43 For children who have been on
glucocorticoids or have already lost BMD,
either oral pamidronate or alendronate in
oral/intravenous routes can be considered
based on the availability.

Misra [67] Anorexia
nervosaa

2 Children and adults 55 Bisphosphonates may be considered in
adults with osteoporosis, particularly when
there is a history of fractures, but should
be used cautiously in women of child
bearing age.

aReview evaluated also other treatments for osteoporosis other than bisphosphonates administration.
b4 studies evaluated bisphosphonates administration in a total of 99 patients; the study of Iwasaki et al. [68] enrolled 30 patients but did not specify how many
received bisphosphonates.

Pediatric and heritable disorders
until the achievement of final height [22
&&

,69,70]. If
risk factors resolve (mainly in children with secon-
dary osteoporosis) and the patient is clinically stable
for at least 6–12 months, discontinuation of
bisphosphonates may be considered during growth
 Copyright © 2017 Wolters Kluwer 
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[22
&&

]. To avoid unnecessary overtreatment, Trejo
and Rauch recently proposed to administer intra-
venous zoledronate in children with osteogenesis
imperfecta at a dose that depends on lumbar spine
areal BMD Z-score results [31

&

].
Health, Inc. All rights reserved.
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Osteoporosis in childhood Vierucci et al.
CONCLUSION

Primary and secondary forms of pediatric osteopo-
rosis represent an emerging condition with signifi-
cant impact on the quality of life. Thus, pediatric
osteoporosis should be adequately suspected and
properly diagnosed in subjects at risk for fractures.
At present, the administration of bisphosphonates
represents the main medical treatment of pediatric
osteoporosis, but many questions remain unan-
swered, e.g. optimal route of administration,
duration of therapy, long-term safety, possible
transplacental passage in women of child-bearing
age, efficacy in reducing incident fracture rate.
Particularly, accurate selection of children with true
indications for bisphosphonates treatment is essen-
tial to avoid unnecessary treatment.
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 CURRENT
OPINION Revisiting the role of steroids and aspirin in the

management of acute Kawasaki disease

Anita Dhanrajania and Rae S.M. Yeungb

Purpose of review
Kawasaki disease is an acute multisystem childhood vasculitis with a predilection for the coronary arteries.
The role of corticosteroids and acetyl salicylic acid (ASA) in the treatment of acute Kawasaki disease are
matters of ongoing debate and changing attitudes from one extreme to the other. Recent work has
provided new evidence to guide our thinking about these two therapeutic agents, which will be the focus of
this review.

Recent findings
Corticosteroids are effective and well tolerated in Kawasaki disease, both as initial adjunctive treatment in
those at high-risk for poor outcome, and as rescue therapy after failed intravenous immunoglobulin (IVIG).
Higher doses of ASA (> 30 mg/kg/day) in the acute phase of Kawasaki disease, have no clear benefit
over antiplatelet doses in improving coronary outcome.

Summary
Corticosteroids should be used in patients at high-risk for poor coronary outcome, and in patients who fail
IVIG. The absence of widely applicable and validated risk-scoring systems in Kawasaki disease outside of
Japan remains a limiting factor to identify high-risk children. Current evidence does not demonstrate any
advantage of high-dose over low-dose ASA in the acute phase of Kawasaki disease, in preventing
coronary artery aneurysms.

Keywords
aspirin, corticosteroids, Kawasaki disease

INTRODUCTION

Kawasaki disease is the leading cause of childhood
acquired heart disease in the developed world [1].
Clinically, Kawasaki disease is characterized by pro-
longed fever for 5 or more days associated with signs
of widespread systemic inflammation. The etiopa-
thogenesis of Kawasaki disease reflects a dysregu-
lated immune response to an environmental trigger
in a genetically susceptible host. The American
Heart Association (AHA) statement on diagnosis
and management of Kawasaki disease [2

&

], and the
Japanese Society of Pediatric Cardiology and Cardiac
Surgery (JSPCCS) guidelines [3], provide recommen-
dations to assist physicians caring for patients with
Kawasaki disease. The efficacy of intravenous immu-
noglobulin (IVIG) as a single 2 g/kg infusion to
prevent coronary artery abnormality (CAA) during
the acute phase of illness is well established and
currently standard of care on both sides of the
Pacific. The role of corticosteroids and ASA in the
acute management of Kawasaki disease remain con-
troversial. The paper will review recent evidence on
this topic.

CORTICOSTEROIDS IN KAWASAKI DISEASE

Rationale for use

Corticosteroids are the mainstay of therapy in
medium vessel vasculitides with well known and
undisputed anti-inflammatory properties.

Case series and retrospective studies

The majority of early reports of corticosteroids
in Kawasaki disease are from small case series,
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KEY POINTS

� Corticosteroids are beneficial in reducing inflammation
as part of early intensification therapy and rescue
treatment after failed IVIG.

� A dose of 2 mg/kg or equivalent of prednisone over an
intermediate period of time (>3 days and tapered over
2 weeks) is efficacious and without risk of serious
adverse events.

� In the absence of evidence to support the effectiveness
of higher doses to prevent adverse coronary outcome,
low-dose ASA (3–5 mg/kg) may be used throughout
the disease course.

� Predictive scoring algorithms to accurately identify high-
risk children from all ethnicities is a priority on our way
to improving management and outcome in
Kawasaki disease.

Pediatric and heritable disorders
nonrandomized studies, and retrospective studies.
The first published study on corticosteroids in Kawa-
saki disease was a small non-randomized study from
Japan in 1979 by Kato et al. [4]. Five different treat-
ment protocols were assessed for their impact on
incidence of coronary artery aneurysms (CAA), three
of which included prednisolone (2–3 mg/kg/d)
either alone or in combination with warfarin or
ASA. The alarmingly higher frequency of CAA
(64.7%) in the steroid only group led to a strong
hesitation to conduct further studies with cortico-
steroids. Interestingly, the group that received a com-
bination of prednisolone with ASA, did not report
any CAAs, a distinctly different outcome despite the
use of prednisolone. In a study of 60 patients, Kijima
et al. [5] showed that three consecutive daily pulse
doses of intravenous methylprednisolone (IVMP)
30 mg/kg/day resulted in improvement in CAA com-
pared to those without steroids. In 1993, Sundel et al.
[6] reported a small case series of 13 patients with
failed IVIG, who were retreated with additional IVIG.
Two of these patients remained febrile and benefitted
from IVMP (30 mg/kg/day). In 1999, Shinohara et al.
[7] conducted a retrospective single-center chart
review of 299 patients with Kawasaki disease using
four regimens including combinations of ASA, IVIG,
prednisolone, dipyridamole, and propranolol. They
showed significant reduction of fever and CAA inci-
dence in all regimens that included prednisolone. All
these early non-randomized studies supported a
beneficial role of corticosteroids in Kawasaki disease
either as initial therapy or rescue treatment in
IVIG failures. A retrospective single-center study by
McCrindle et al. [8] examined 80 patients with Kawa-
saki disease with CAA and compared the subgroup
that received corticosteroid for duration of fever and
 Copyright © 2017 Wolters Kluwer 
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evolution of CAAs. Results indicated that the cortico-
steroid treated group had longer duration of fever,
and progressive increase in coronary artery Z-scores.
Confounding by indication, with more severely
affected patients receiving steroids is an important
consideration in this retrospective study.
Randomized controlled trials

The first prospective randomized controlled trial
(RCT) on corticosteroids as primary therapy in
Kawasaki disease came from Boston in 2003 [9], in
which patients with Kawasaki disease were ran-
domly allocated to receive IVIG 2 g/kg with ASA
80–100 mg/kg/day or together with the addition
of IVMP (30 mg/kg). Patients in the corticosteroid
group had no serious adverse events and experi-
enced shorter duration of fever, shorter hospital
stay, lower levels of C-reactive protein (CRP); how-
ever, no difference in coronary dimensions at week
6. The statistical power of this study was limited
with the total number of subjects in each group
being less than 25, and the number of patients with
coronary aneurysms at week 6 being only 1 in each
group.

A larger prospective randomized controlled trial
by Inoue et al. [10] in 2006, compared CAAs in
patients receiving IVIG (1 g/kg/day � 2) with IVIG
plus intravenous (IV) prednisolone 6 mg/kg/day,
which was switched to oral dosing after fever resol-
ution, and tapered over 15 days after normalization
of the CRP. The incidence of aneurysms at 1 month
was 3 of 88 in the IVIG alone group and 0 of 90 in the
prednisolone plus IVIG group. Secondary outcomes
of fever resolution and time to normalization of CRP
were also significantly better in the corticosteroid
group. Despite limitations (non-blinded echocar-
diogram assessments and different IVIG infusion
regimens), this study suggested that corticosteroids
were effective in reducing the incidence of coronary
aneurysms, as well as improving clinical and bio-
chemical measures of inflammation. The definite
absence of seriousadverse effects in the corticosteroid
group paved the way for conducting subsequent
larger trials.

A multicenter randomized trial by Pediatric
Heart Network investigators in 2007 [11] compared
the efficacy of a single dose of IVMP with placebo in
patients who received IVIG 2 g/kg and ASA at 80–
100 mg/kg. They found no difference in coronary
artery dimensions at weeks 1 and 5. Secondary out-
comes including rate of retreatment with IVIG,
number of days of hospitalization, and fever were
also comparable, suggesting no additional benefit
with corticosteroids. Interestingly, a post-hoc sub-
group analyses of children with persistent fever
Health, Inc. All rights reserved.
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requiring retreatment with IVIG showed that coron-
ary outcomes were better in the initial corticosteroid
treated group, suggesting that corticosteroids may be
beneficial in this high-risk group.
Early intensification of treatment

Recent evidence for the efficacy of corticosteroids in
improving coronary outcome in Kawasaki disease
comes from the RAISE trial [12

&&

] which included
74 Japanese centers. A computer-generated random-
ization sequence divided the cohort into two equal
groups of which 125 patients received prednisolone
in addition to standard of care (IVIG and ASA), and
123 patients received only standard of care. Predni-
solone was initiated at 2 mg/kg intravenously for
5 days or until defervescence, then switched to the
oral route and tapered over 15 days after CRP nor-
malization. Interim analysis demonstrated a statisti-
cally significant difference in the incidence of
coronary aneurysms between the two groups, lead-
ing to premature termination of the study. The
primary outcome of incidence of CAAs was signifi-
cantly lower in the corticosteroid group, without
any difference in the incidence of serious adverse
events. Of the secondary outcomes, the need for
additional rescue treatment was higher in the group
without corticosteroids. Interestingly, the cumulat-
ive dose of prednisolone in this trial was higher
compared to previous studies that used a single
dose of pulse methylprednisolone and failed to
demonstrate differences in coronary artery out-
comes. Notably, the RAISE study focused on chil-
dren at high-risk for poor coronary outcome and
included only patients with a Kobayashi score of
5 points or higher and a much longer total duration
of corticosteroids. Risk stratification is used routinely
in Japan, where risk-scores areeffective andvalidated.
Unfortunately, the Kobayashi score (and other scor-
ing algorithms) are not sensitive outside of Japan.
This study provides the best evidence for a beneficial
role of corticosteroids on coronay outcome in Kawa-
sakidisease,witha focusonthoseathigh-risk forpoor
coronary outcome.

Chen et al. [13] conducted a meta-analysis of
nine clinical studies from Japan and North America,
with 1011 patients in total that compared the effi-
cacy of IVIG plus corticosteroids with IVIG alone. All
studies used corticosteroids as early initial treat-
ment, albeit in different doses and regimens. The
combined results showed that adding corticoste-
roids significantly reduced the risk of CAA [odds
ratio (OR) ¼ 0.3; 95% confidence interval (CI),
0.20–0.46]. A subgroup analyses of the RCTs (OR
¼ 0.3; 95% CI, 0.18–0.5), focused on high-risk
patients (OR ¼ 0.2; 95% CI, 0.1–0.36) and studies
 Copyright © 2017 Wolters Kluwe
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with blinded-endpoints (OR ¼ 0.32; 95% CI, 0.19–
0.55) yielded similar results. There was no signifi-
cant difference in the incidence of severe adverse
events between the groups with and without
steroids. This meta-analysis suggested a substantial
benefit of early corticosteroid use, although the
large variability in the regimens used in individual
studies precluded a conclusion about the ideal cor-
ticosteroid dosing schedule.

The potential for targeted use of corticosteroid
for refractory Kawasaki disease was further explored
by Kimura et al. [14]. A multicentre, prospective
nonrandomized, nonblinded study with 1087
patients, which divided them into high and low
CRP groups after IVIG failure. The high CRP group
received an intensified regimen with the addition of
prednisolone to the second IVIG dose. The combi-
nation of IVIG and corticosteroids was more effec-
tive in abating fever in this group, as compared to
IVIG alone (81.3 vs 67.3%). The results of this study
re-emphasized that the incidence of CAA is high
(18.8%) in IVIG failures and early intensification or
retreatment for this group including the use of
corticosteroids is prudent.

A recent Cochrane review [15
&

] concluded that
the use of corticosteroids in the acute phase of
Kawasaki disease reduces the incidence of CAA,
duration of fever, time for normalization of CRP,
and length of hospitalization. The greatest benefit of
corticosteroids was in Japanese children, but the use
of different treatment regimens may have led to the
different outcomes in Japanese and American stud-
ies. This paper reiterated that corticosteroids are
most beneficial in children with high-risk scores
and the benefit increases with a prolonged course,
versus a single dose. The timing of corticosteroid
administration was further explored by Chen et al.
[16

&&

] in another meta-analysis of 16 studies, includ-
ing the nine from the previous meta-analysis [13],
with 2746 patients in total, in whom corticosteroids
were either administered at the onset, or as rescue
therapy after IVIG failure. The incidence of CAA was
lower in those who received corticosteroid versus
the IVIG only group (OR¼0.424; 95% CI, 0.270–
0.665). Greater benefit was seen in the subgroup that
received early intensification with corticosteroids
compared to the IVIG only group, but no difference
was observed in the corticosteroid rescue therapy
group compared to IVIG. Suggesting that favorable
effects of corticosteroid were higher when given
early, without an increased risk of adverse events.
This led the authors to conclude that ‘corticoste-
roids most likely exert a beneficial effect when
initiated at the diagnosis of Kawasaki disease rather
than after the failure of initial IVIG therapy’. How-
ever, the meta-analysis only included 6 re-treatment
r Health, Inc. All rights reserved.
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studies with 383 patients, of which 167 were treated
with steroids in varying doses and regimens. As is
the case with most meta-analyses, the heterogeneity
of treatment protocols and study designs imposes
limitations on interpretation. In the absence of well
designed randomized controlled trials, the data
point to corticosteroids being beneficial in Kawasaki
disease, more so if given early than late in the disease
course, and most certainly do no harm [17

&

].
Steroids effectively target inflammation and increas-
ingly appear to improve coronary outcome in Kawa-
saki disease. Recent data support the approach of
early intensification of therapy with addition of
corticosteroids to current standard of care in high-
risk children in addition to inclusion as part of the
re-treatment protocol in those with IVIG failure.
The challenge is accurate risk stratification, with
identification of children at high-risk for poor cor-
onary outcome in all ethnicities a priority. Even
though the ideal dose and schedule remains to be
established, it is clear from the data that intravenous
or oral dose of corticosteroids equivalent to predni-
sone at 2 mg/kg in the acute phase in short to
medium-term regimens (more than 3 days) followed
by a tapering schedule dictated by clinical and labora-
tory signs of inflammation over 2 weeks is effective
and does not pose additional safety concerns.
ASPIRIN AND Kawasaki disease

Rationale for use

Acetylsalicylic acid (ASA/aspirin) is a non-steroidal
anti-inflammatory drug that has been used for sev-
eral decades in Kawasaki disease. In high doses, it
exerts an anti-inflammatory effect, and in lower
doses, it has antithrombotic effects [18]. According
to recent AHA guidelines, moderate (30–50 mg/
kg/day) to high-dose (80–100 mg/kg/day) ASA is
recommended in the acute phase of Kawasaki dis-
ease. The JSPCCS guidelines recommend 30–50 mg/
kg/day of ASA in the febrile phase. ASA was the most
widely used anti-inflammatory therapy for Kawasaki
disease before IVIG was established as standard
treatment. In the post-IVIG era however, there
has been considerable debate about the optimal
dose of ASA in the acute phase of Kawasaki disease
and whether there is a role in preventing CAA.
Anti-inflammatory steady-state levels are often dif-
ficult to achieve in patients with Kawasaki disease,
owing to decreased gastrointestinal absorption and
increased renal clearance of ASA during the acute
phase of disease. Hypoalbuminemia in the acute
phase decreases protein binding of the active form
of the drug, and may lead to therapeutic effects or
even toxic effects at lower total ASA levels [19].
 Copyright © 2017 Wolters Kluwer 
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Early literature

A potential limitation in interpretation of early
literature is the use of variable regimens and doses
of IVIG. An early meta-analysis of 28 non-random-
ized studies on the efficacy of different doses of ASA
and IVIG, by Durongpisitkul et al. [20] showed that
there was no additional benefit of high-dose ASA to
IVIG in preventing CAA. Furusho et al. in 1991 [21],
randomized 102 children to receive IVIG alone
(200 mg/kg/day for 5 days) or IVIG with ASA (30–
50 mg/kg/day until defervescence), with no clear
benefit of adding ASA to IVIG on the rate of CAAs.
Shulman et al. [22] reviewed six U.S. and Japanese
multicenter RCTs comparing the effect of various
doses of IVIG with ASA on the rate of CAA develop-
ment in Kawasaki disease. A total of 868 Japanese
patients were treated with moderate dose (30–
50 mg/kg per day), and 761 U.S. patients treated
with high-dose ASA (80–120 mg/kg/day), with total
IVIG dose ranging from 1 to 2 g/kg. The results
indicated that the incidence of CAAs was inversely
related to the total dose of IVIG but independent of
ASA dose. These studies point to a limited role of
ASA in reducing CAA in the post-IVIG era.
Recent literature

Several nonrandomized retrospective studies com-
paring ASA dosing brought to light the limited use-
fulness of higher doses of ASA in prevention of CAA.
In 2004, a group of Taiwanese researchers [23] retro-
spectively studied 162 patients with Kawasaki dis-
ease, all of whom received IVIG 2 g/kg as a single
infusion without concomitant ASA treatment. The
IVIG resistance rate of 5.56% was similar to that
reported in studies with combined IVIG and ASA,
suggesting that ASA in the acute phase of Kawasaki
disease had no effect on preventing IVIG failure. A
Cochrane review on salicylate use in Kawasaki dis-
ease [24] identified a single RCT on ASA dosing. The
authors were unable to recommend the optimal
dose of ASA, because of scarcity of data from good
quality RCTs directly comparing high-dose (80–
100 mg/kg/day) with low-dose (3–5 mg/kg/day)
ASA. In a recent review from the United Kingdom
[25] an ASA dose of 30–50 mg/kg/day was recom-
mended based on interpretation of results from
Shulman’s meta-analysis.

More recently, a small retrospective study from
Israel [26], comparing high dose (80–100 mg/kg/
day) with low dose ASA (3–5 mg/kg/day) and IVIG
(2 g/kg), found no significant difference between the
two groups in the rate of occurrence of CAAs. A
much larger study using data from the eighth
nationwide survey on Kawasaki disease from Korea
[27

&&

] had 8546 patients who were divided into two
Health, Inc. All rights reserved.
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groups according to the dose of ASA (>30 or 3–5 mg/
kg/day). The prevalence of CAA based on Z-score
(24.8 vs. 18.3%; P¼0.001) and on the Japanese
Ministry of Health criteria (19.0 vs. 10.4%;
P<0.001) was significantly higher in the 7947
patients who received medium-dose or high-dose
ASA compared with the 509 patients who received
low-dose ASA. In addition, the use of high-dose of
ASA was a significant predictor of CAA by logistic
regression analysis, thus suggesting that intermedi-
ate and high-dose ASA is not protective against CAA,
and perhaps even a risk factor for development of
CAAs. This is in accord with laboratory data showing
the paradoxical effect of intermediate-concen-
trations ASA on enhancing pro-inflammatory cyto-
kine production [28]. Despite being a retrospective
cross-sectional survey, this is by far the largest cohort
of patients with Kawasaki disease that addresses a
very relevant clinical question regarding optimal ASA
dose, and the results indicate limited usefulness and
potential harm from higher doses of ASA.

In the absence of controlled data, the optimal
dose of ASA in the acute phase of Kawasaki disease
remains debated. However, there is sufficient evi-
dence to suggest that higher doses (>30 mg/kg/day)
have no clear advantage in suppressing inflam-
mation, and may increase the risk of not only
adverse effects but also poor coronary outcome,
suggesting that antiplatelet doses of ASA (3–5 mg/
kg/day) may be the most rational, ‘do no harm’
approach, until better evidence becomes available.
CONCLUSIONS

Corticosteroids given systemically either IV or oral
at the equivalent of prednisone 2 mg/kg/day for a
short to intermediate course (> 3 days) followed by a
tapering schedule over 2 weeks as dictated by
clinical and laboratory measures of inflammation
is well tolerated and effective in controlling clinical
signs of inflammation. Early addition of steroids
with intensification of treatment is most effective,
especially in those at high-risk for poor outcome,
but is predicated on the need for accurate predictive
scoring systems to identify high-risk children. This
re-emphasizes the need to develop more widely
validated risk-stratification algorithms.

The optimal dose of ASA in the acute phase of
Kawasaki disease is less clear; however, recent data
does not support any advantage of medium or high-
dose ASA in lowering the risk for development of
CAA or reducing clinical features of inflammation.
In fact, the opposite may be true with higher risk
of poor coronary outcome in those on medium or
high-dose ASA. Thus, using low-dose ASA (3–5 mg/
kg) throughout the course of Kawasaki disease may
 Copyright © 2017 Wolters Kluwe
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be the safest option until appropriately designed
and sufficiently powered studies can answer this
question.
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